117
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Monte Carlo Analysis of Thermal Effects in Monolayer Graphene

, &

References

  • Alì, G., Mascali, G., Romano, V., Torcasio, C.R. (2012). A Hydrodynamical Model for Covalent Semiconductors, with Applications to GaN and SiC. Acta Appl. Math. 122(1):335.
  • Barletti, L. (2014). Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle. J. Math. Phys. 55:083303.
  • Borysenko, K. M., Mullen, J. T., Barry, E. A., Paul, S., Semenov, Y. G., Zavada, J. M., Buongiorno Nardelli, M., Kim, K. W. (2010). First-principles analysis of electron-phonon interactions in graphene. Phys. Rev. B 11:121412.
  • Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., Geim, A. K. (2009). The electronic properties of graphene. Rev. Mod. Phys. 81:109–162.
  • Camiola, V. D., Romano, V. (2014). Hydrodynamical Model for Charge Transport in Graphene. J. Stat. Phys. 157:1114–1137.
  • Camiola, V.D., Mascali, G., Romano, V. (2012). Numerical Simulation of a Double-Gate Mosfet with a Subband Model for Semiconductors Based on the Maximum Entropy Principle. Continuum Mech. Therm. 24(4–6):417.
  • Feng, T., Ruan, X., Ye, Z., Cao, B. (2015). Spectral phonon mean free path and thermal conductivity accumulation in defected graphene: The effects of defect type and concentration. Phys. Rev. B 91:224301-01–12.
  • Koukaras, E.N., Kalosakas, G., Galiotis, C., Konstantinos, P. (2015). Phonon properties of graphene derived from molecular dynamics simulations. Scientific Reports 5:12923.
  • Li, X., Barry, E. A., Zavada, J. M., Buongiorno Nardelli, M., Kim, K. W. (2010). Surface polar phonon dominated electron transport in graphene. Appl. Phys. Lett. 97:232105.
  • Lichtenberger, P., Morandi, O., Schürrer, F. (2011). High-field transport and optical phonon scattering in graphene. Physical review B 84:045406.
  • Lugli, P., Ferry, D. K. (1985). Degeneracy in the Ensemble Monte Carlo Method for High-Field Transport in Semiconductors. IEEE Trans. on Elect. Devices ED-32(11):2431–2437.
  • Mascali, G. (2015). A hydrodynamic model for silicon semiconductors including crystal heating. Eur. J. Appl. Math. 26:447–496.
  • Mascali, G., Romano, V. (2014). A comprehensive hydrodynamical model for charge transport in graphene. IWCE- 2014, IEEE, Paris, June 3–6.
  • Morandi, O., Schürrer, F. (2011). Wigner model for quantum transport in graphene. J. Phys. A: Math. Theor. 44:265301.
  • Muscato, O., Di Stefano, V. (2011). Local equilibrium and off-equilibrium thermoelectric effects in silicon semiconductors. J. of Appl. Phys. 110:093706-1–10.
  • Muscato, O., Di Stefano, V., Wagner, W. (2013). A variance-reduced electrothermal Monte Carlo method for semiconductor device simulation. Comput. Math. Appl. 65:520–527.
  • Nika, D.L., Balandin, A.A. (2012). Two-dimensional phonon transport in graphene. J. Phys.: Condens. Matter 24:233203.
  • Pop, E., Sinha, S., Goodson, K. E. (2006). Heat generation and transport in nanometer-scale transistors. Proc. IEEE 94:1587–160.
  • Romano, V., Majorana, A., Coco, M. (2015). DSMC method consistent with the Pauli exclusion principle and comparison with deterministic solutions for charge transport in graphene. J. Comput. Phys. 302:267–284.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.