534
Views
0
CrossRef citations to date
0
Altmetric
Research Article

On Global Existence and Regularity of Solutions for a Transport Problem Related to Charged Particles

References

  • Agoshkov, V. 1998. Boundary value problems for transport equations. Berlin, Germany: Springer Science + Business Media.
  • Alonso, R., and W. Sun. 2014. The radiative transfer equation in the forward-peaked regime. arXiv:1411.0163v1 [math.AP].
  • Aubin, J.-P. 1979. Applied functional analysis. Hoboken, NJ: John Wiley and Sons.
  • Bouchut, F. 2002. Hypoelliptic regularity in kinetic equations. J. Math. Pures Appl. 81 (11):1135–59. doi:10.1016/S0021-7824(02)01264-3
  • Cessenat, M. 1984. Théorémes de trace Lp pour des espaces de fonctions de la neutronique. C.R. Acad. Sc. Paris, t. 299, Serie 1, number 16.
  • Chen, Y., and L. He. 2012. Smoothing estimates for Boltzmann equation with full-range interactions. Spatially inhomogeneous case. Arch. Rational Mech. Anal. 203 (2):343–77. doi:10.1007/s00205-011-0482-3
  • Chupin, L. 2010. Fokker-Planck equation in bounded domain. Ann. Inst. Fourier 60 (1):217–55. doi:10.5802/aif.2521
  • Dautray, R., and J.-L. Lions. 1999. Mathematical analysis and numerical methods for science and technology. Vol. 6. Evolution Problems II. Berlin, Germany: Springer.
  • Degond, P. 1986. Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions. Ann. Sci. École Norm. Sup. 4e serie 19 (4):519–42. doi:10.24033/asens.1516
  • Egger, H., and M. Schlottbom. 2014. An Lp-theory for stationary radiative transfer. Appl. Anal. 93 (6):1283–96. doi:10.1080/00036811.2013.826798
  • Folland, G. B. 1999. Real analysis: Modern techniques and their applications. Hoboken, NJ: Wiley and Sons.
  • Frank, M., M. Herty, and A. N. Sandjo. 2010. Optimal radiotherapy treatment planning governed by kinetic equations. Math. Models Methods Appl. Sci. 20 (04):661–78. doi:10.1142/S0218202510004386
  • Friedman, A. 1976. Partial differential equations. Malabar, FL: Robert E. Krieger Publishing Co.
  • Friedrichs, K. O. 1944. The identity of weak and strong extensions of differential operators. Trans. Amer. Math. Soc. 55:132–51. doi:10.1090/S0002-9947-1944-0009701-0
  • Friedrichs, K. O. 1958. Symmetric positive linear differential equations. Comm. Pure Appl. Math. 11:333–418.
  • Fukuoka, R. 2006. Mollifier smoothing of tensor fields on differentiable manifolds and applications to Riemannian geometry. arXiv:math/06088230v1 [math.DG].
  • Grisvard, P. 1985. Elliptic problems in nonsmooth domains, vol. 24 of Monographs and Studies (Mathematics). London, UK: Pitman.
  • Halmos, P. R., and V. S. Sunder. 1978. Bounded Integral Operators on L2 Spaces. Berlin, Germany: Springer.
  • Herty, M., C. Jörres, and A. N. Sandjo. 2012. Optimization of a model Fokker-Planck equation. Kinetic Relat. Models 5 (3):485–503. doi:10.3934/krm.2012.5.485
  • Herty, M., and A. N. Sandjo. 2011. On optimal treatment planning in radiotherapy governed by transport equations. Math. Models Methods Appl. Sci. 21 (2):345–59. doi:10.1142/S0218202511005076
  • Hörmander, L. 1985. The analysis of linear partial differential operators III. Berlin, Germany: Springer.
  • Lax, P. D., and R. S. Phillips. 1960. Local boundary conditions for dissipative symmetric linear differential operators. Comm. Pure Appl. Math. 13 (3):427–55. doi:10.1002/cpa.3160130307
  • Le Bris, C., and P.-L. Lions. 2008. Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients. Comm. Partial Diff. Equations 33 (7):1272–317. doi:10.1080/03605300801970952
  • Mokhtar-Kharroubi, M. 1991. W1,p regularity in transport theory. Math. Models. Methods. Appl. Sci. 1 (4):477–99.
  • Morando, A., P. Secchi, and P. Trebeschi. 2009. Characteristic initial boundary value problems for symmetrizable systems. Rend. Sem. Mat. Univ. Torino 67:229–45.
  • Nishitani, T., and M. Takayama. 1996. A characteristic initial boundary value problem for a symmetric positive system. Hokkaido Math. J. 25 (1):167–82. doi:10.14492/hokmj/1351516716
  • Nishitani, T., and M. Takayama. 1998. Characteristic initial boundary value problems for symmetric hyperbolic systems. Osaka J. Math. 35:629–57.
  • Nishitani, T., and M. Takayama. 2000. Regularity of solutions to non-uniformly characteristic boundary value problems for symmetric systems. Commun. Part. Diff. Eq. 25 (5–6):987–1018.
  • Pazy, A. 1983. Semigroups of linear operators and applications to partial differential equations. Berlin, Germany: Springer.
  • Phillips, R. S., and L. Sarason. 1966. Singular symmetric positive first order differential operators. J. Math. Mech. 15 (2):235–71.
  • Rauch, J. 1985. Symmetric positive systems with boundary characteristic of constant multiplicity. Trans. Amer. Math. Soc. 291 (1):167–87. doi:10.1090/S0002-9947-1985-0797053-4
  • Rauch, J. 2012. Hyperbolic partial differential equations and geometric optics. Providence, RI: American Mathematical Society.
  • Rauch, J., and F. Massey. 1974. Differentiability of solutions to hyperbolic initial-boundary value problems. Trans. Amer. Math. Soc. 189:303–18. doi:10.2307/1996861
  • Tervo, J. 2019. On linear hypersingular Boltzmann transport equation and its variational formulation. arXiv:1808.09631v3 [math.AP].
  • Tervo, J., and M. Herty. 2020. On approximation of a hyper-singular transport operator and existence of solutions. Methods Appl. Anal. 27 (2):125–52. doi:10.4310/MAA.2020.v27.n2.a2
  • Tervo, J., and P. Kokkonen. 2017. On existence of L1-solutions for coupled Boltzmann transport equation and radiation therapy treatment planning. arXiv:1406.3228v2 [math.OC].
  • Tervo, J., P. Kokkonen, M. Frank, and M. Herty. 2018. On approximative linear Boltzmann transport equation for charged particle transport. Math. Models Methods Appl. Sci. 28 (14):2905–39. doi:10.1142/S0218202518500641
  • Tervo, J., P. Kokkonen, M. Frank, and M. Herty. 2018a. On existence of L2-solutions of coupled Boltzmann continuous slowing down transport equation system. arXiv:1603.05534v3 [math.OC].
  • Tervo, J., P. Kokkonen, M. Frank, and M. Herty. 2018b. On existence of solutions for Boltzmann continuous slowing down transport Equation. J. Math. Anal. Appl. 460 (1):271–301. doi:10.1016/j.jmaa.2017.11.052
  • Tian, R. 2014. Existence, uniqueness and regularity property of solutions to Fokker-Planck type equations. J. Math. Anal. Appl. 2 (1):53–63.
  • Treves, F. 1975. Basic linear partial differential equations. Cambridge, MA: Academic Press.
  • Ukai, S., and T. Yang. 2010. Mathematical theory of Boltzmann equation. Kowloon, Hong Kong: City University of Hong Kong, Reprint.
  • Yosida, K. 1980. Functional analysis. 6th ed. Berlin, Germany: Springer.
  • Zeghal, A. 2012. Sobolev regularity in neutron transport theory. ISRH Math. Anal. 2012:1–22. doi:10.5402/2012/379491