1,030
Views
0
CrossRef citations to date
0
Altmetric
Articles

NURBS Enhanced Virtual Element Methods for the Spatial Discretization of the Multigroup Neutron Diffusion Equation on Curvilinear Polygonal Meshes

ORCID Icon, ORCID Icon &

References

  • Ahmad, B., A. Alsaedi, F. Brezzi, L. Marini, and A. Russo. 2013. Equivalent projectors for virtual element methods. Comput. Math. Appl. 66 (3):376–91. doi:10.1016/j.camwa.2013.05.015
  • Aigner, M., C. Heinrich, B. Jüttler, E. Pilgerstorfer, B. Simeon, and A. V. Vuong. 2009. Swept volume parameterization for isogeometric analysis. In Mathematics of Surfaces XIII. Mathematics of Surfaces 2009. Lecture Notes in Computer Science, vol. 5654, 19–44. Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-03596-8_2
  • Antonietti, P. F., G. Manzini, and M. Verani. 2018. The fully nonconforming virtual element method for biharmonic problems. Math. Models Methods Appl. Sci. 28 (2):387–407. doi:10.1142/S0218202518500100
  • Antonietti, P. F., P. Houston, and G. Pennesi. 2018. Fast numerical integration on polytopic meshes with applications to discontinuous Galerkin finite element methods. J. Sci. Comput. 77 (3):1339–70. doi:10.1007/s10915-018-0802-y
  • Ayuso de Dios, B., K. Lipnikov, and G. Manzini. 2016. The nonconforming virtual element method. ESAIM: M2AN 50 (3):879–904. doi:10.1051/m2an/2015090
  • Balay, S., S. Anhyankar, M. F. Adams, J. Brown, P. Brune, D. Buschleman, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, et al. 2020. PETSc users’ manual. Tech. rep., Argonne National Laboratory, Lemont, IL.
  • Bazilevs, Y., V. Calo, J. Cottrell, J. Evans, T. Hughes, S. Lipton, M. Scott, and T. Sederberg. 2010. Isogeometric analysis using T-splines. Comput. Methods Appl. Mech. Engng. 199 (5-8):229–63. doi:10.1016/j.cma.2009.02.036
  • Beall, M. W., and M. S. Shephard. 1997. General topology-based mesh data structure. Int. J. Numer. Meth. Engng. 40 (9):1573–96. doi:10.1002/(SICI)1097-0207(19970515)40:9¡1573::AID-NME128¿3.0.CO;2-9
  • Beirão da Veiga, L., A. Russo, and G. Vacca. 2019. The virtual element method with curved edges. ESAIM: M2AN 53 (2):375–404. doi:10.1051/m2an/2018052
  • Beirão da Veiga, L., F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo. 2013. Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (1):199–214. doi:10.1142/S0218202512500492
  • Beirão da Veiga, L., F. Brezzi, L. D. Marini, and A. Russo. 2014. The Hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24 (8):1541–73. doi:10.1142/S021820251440003X
  • Beirão da Veiga, L., F. Brezzi, L. D. Marini, and A. Russo. 2016a. Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26 (4):729–50. doi:10.1142/S0218202516500160
  • Beirão da Veiga, L., F. Brezzi, L. D. Marini, and A. Russo. 2016b. Serendipity nodal VEM spaces. Comput. Fluids 141:2–12. doi:10.1016/j.compfluid.2016.02.015
  • Beirão da Veiga, L., F. Brezzi, L. D. Marini, and A. Russo. 2020. Polynomial preserving virtual elements with curved edges. Math. Models Methods Appl. Sci. 30 (8):1555–90. doi:10.1142/S0218202520500311
  • Berrone, S., A. Borio, and G. Manzini. 2018. SUPG stabilization for the nonconforming virtual element method for advection-diffusion-reaction equations. Comput. Methods Appl. Mech. Engng. 340:500–29. doi:10.1016/j.cma.2018.05.027
  • Berrone, S., and A. Borio. 2017. Orthogonal polynomials in badly shaped polygonal elements for the Virtual Element Method. Finite Elem. Anal. Des. 129:14–31. doi:10.1016/j.finel.2017.01.006
  • Bertoluzza, S., M. Pennacchio, and D. Prada. 2019. High order VEM on curved domains. Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 30 (2):391–412. doi:10.4171/RLM/853
  • Biswas, R., and R. C. Strawn. 1994. A new procedure for dynamic adaption of three-dimensional unstructured grids. Appl. Numer. Math. 13 (6):437–52. doi:10.1016/0168-9274(94)90007-8
  • Brenner, S. C., and L.-Y. Sung. 2018. Virtual element methods on meshes with small edges or faces. Math. Models Methods Appl. Sci. 28 (7):1291–336. doi:10.1142/S0218202518500355
  • Brenner, S. C., Q. Guan, and L.-Y. Sung. 2017. Some estimates for virtual element methods. Comput. Methods Appl. Math. 17 (4):553–74. doi:10.1515/cmam-2017-0008
  • Brezzi, F., and L. D. Marini. 2013. Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Engng. 253:455–62. doi:10.1016/j.cma.2012.09.012
  • Cangiani, A., G. Manzini, and O. J. Sutton. 2016. Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37 (3):drw036. doi:10.1093/imanum/drw036
  • Chin, E. B., J. B. Lasserre, and N. Sukumar. 2015. Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra. Comput. Mech. 56 (6):967–81. doi:10.1007/s00466-015-1213-7
  • Ciarlet, P. G. 2002. The finite element method for elliptic problems. Philadelphia, PA: Society for Industrial and Applied Mathematics. doi:10.1137/1.9780898719208
  • Collins, B., A. Godfrey, S. Stimpson, and S. Palmtag. 2020. Simulation of the BEAVRS benchmark using VERA. Ann. Nucl. Energy 145:107602. doi:10.1016/j.anucene.2020.107602
  • Coons, S. A. 1967. MAC-TR-41: Surfaces for computer-aided design of space forms. Tech. rep., Massachusetts Institute of Technology, Cambridge, MA.
  • Coons, S. A. 1974. Surface patches and B-spline curves. In Computer aided geometric design, 1–16. New York, NY: Elsevier. doi:10.1016/B978-0-12-079050-0.50006-0
  • Cox, M. G. 1972. The numerical evaluation of B-splines. IMA J. Appl. Math. 10 (2):134–49. doi:10.1093/imamat/10.2.134
  • da Veiga, L. B., and G. Manzini. 2014. A virtual element method with arbitrary regularity. IMA J. Numer. Anal. 34 (2):759–81. doi:10.1093/imanum/drt018
  • da Veiga, L. B., C. Lovadina, and A. Russo. 2017. Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27 (13):2557–94. doi:10.1142/S021820251750052X
  • da Veiga, L. B., F. Brezzi, L. D. Marini, and A. Russo. 2016. Virtual element implementation for general elliptic equations. In Building bridges: Connections and challenges in modern approaches to numerical partial differential equations, 39–71. Berlin, Heidelberg: Springer International Publishing. doi:10.1007/978-3-319-41640-3_2
  • Dassi, F., and L. Mascotto. 2018. Exploring high-order three dimensional virtual elements: Bases and stabilizations. Comput. Math. Appl. 75 (9):3379–401. doi:10.1016/j.camwa.2018.02.005
  • de Berg, M., O. Cheong, M. van Kreveld, and M. Overmars. 2008. Computational geometry. Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-77974-2
  • de Boor, C. 1972. On calculating with B-splines. J. Approximat. Theory 6 (1):50–62. doi:10.1016/0021-9045(72)90080-9
  • Duderstadt, J. J., and L. J. Hamilton. 1976. Nuclear reactor analysis. Hoboken, NJ: John Wiley & Sons, Inc.
  • Ferguson, J., J. Kópházi, and M. D. Eaton. 2021. Virtual element methods for the spatial discretisation of the multigroup neutron diffusion equation on polygonal meshes with applications to nuclear reactor physics. Ann. Nucl. Energy 151:107884. doi:10.1016/j.anucene.2020.107884
  • Gaston, D. R., C. J. Permann, J. W. Peterson, A. E. Slaughter, D. Andrš, Y. Wang, M. P. Short, D. M. Perez, M. R. Tonks, J. Ortensi, et al. 2015. Physics-based multiscale coupling for full core nuclear reactor simulation. Ann. Nucl. Energy 84:45–54. doi:10.1016/j.anucene.2014.09.060
  • Habetler, G. J., and M. A. Martino. 1958. KAPL-1886: The multigroup diffusion equations of reactor physics. Tech. rep., Knolls Atomic Power Laboratory, Niskayuna, NY.
  • Hall, S. K., M. D. Eaton, and M. M. R. Williams. 2012. The application of isogeometric analysis to the neutron diffusion equation for a pincell problem with an analytic benchmark. Ann. Nucl. Energy 49:160–9. doi:10.1016/j.anucene.2012.05.030
  • Harmel, M., R. A. Sauer, and D. Bommes. 2017. Volumetric mesh generation from T-spline surface representations. Comput-Aided. Des. 82:13–28. doi:10.1016/j.cad.2016.07.017
  • Hebert, A. 2020. Applied reactor physics. 3rd ed. Montréal, Canada: Presses internationales Polytechnique.
  • Hughes, T., A. Reali, and G. Sangalli. 2010. Efficient quadrature for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Engng. 199 (5–8):301–13. doi:10.1016/j.cma.2008.12.004
  • Hughes, T., J. Cottrell, and Y. Bazilevs. 2005. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Engng. 194 (39–41):4135–95. doi:10.1016/j.cma.2004.10.008
  • Kallinderis, Y., and P. Vijayan. 1993. Adaptive refinement-coarsening scheme for three-dimensional unstructured meshes. AIAA J. 31 (8):1440–7. doi:10.2514/3.11793
  • Kang, C. M., and K. F. Hansen. 1973. Finite Element Methods for Reactor Analysis. Nucl. Sci. Eng. 51 (4):456–95. doi:10.13182/NSE73-A23278
  • Khamayseh, A., and B. Hamann. 1996. Elliptic grid generation using NURBS surfaces. Comput. Aided Geom. Des. 13 (4):369–86. doi:10.1016/0167-8396(95)00050-X
  • Lasserre, J. B. 1998. Integration on a convex polytope. Proc. Amer. Math. Soc. 126 (8):2433–41. doi:10.1090/S0002-9939-98-04454-2
  • Latimer, C., J. Kópházi, M. D. Eaton, and R. G. McClarren. 2020. A geometry conforming isogeometric method for the self-adjoint angular flux (SAAF) form of the neutron transport equation with a discrete ordinate (SN) angular discretisation. Ann. Nucl. Energy 136:107049. doi:10.1016/j.anucene.2019.107049
  • Latimer, C., J. Kópházi, M. D. Eaton, and R. McClarren. 2020. A geometry conforming, isogeometric, weighted least squares (wls) method for the neutron transport equation with discrete ordinate (SN) angular discretisation. Prog. Nucl. Energy 121:103238. doi:10.1016/j.pnucene.2019.103238
  • Latimer, C., J. Kópházi, M. D. Eaton, and R. McClarren. 2021. Spatial adaptivity of the SAAF and Weighted Least Squares (WLS) forms of the neutron transport equation using constraint based, locally refined, isogeometric analysis (IGA) with dual weighted residual (DWR) error measures. J. Comput. Phys. 426:109941. doi:10.1016/j.jcp.2020.109941
  • Lawrence, R. 1986. Progress in nodal methods for the solution of the neutron diffusion and transport equations. Prog. Nucl. Energy 17 (3):271–301. doi:10.1016/0149-1970(86)90034-X
  • Lewis, E. E., M. A. Smith, N. Tsoulfanidis, G. Palmiotti, T. A. Taiwo, and R. N. Blomquist. 2003. Benchmark on deterministic transport calculations without spatial homogenisation: A 2-D/3-D MOX fuel assembly benchmark. Tech. Rep. NEA/NSC/DOC(2003)16, Nuclear Energy Agency (NEA), Organisation for Economic Co-operation and Development.
  • Lin, F., and W. Hewitt. 1994. Expressing Coons-Gordon surfaces as NURBS. Comput-Aided. Des. 26 (2):145–55. doi:10.1016/0010-4485(94)90035-3
  • Lin, H., S. Jin, Q. Hu, and Z. Liu. 2015. Constructing B-spline solids from tetrahedral meshes for isogeometric analysis. Comput. Aided Geom. Des. 35–36:109–20. doi:10.1016/j.cagd.2015.03.013
  • Liu, X., J. Li, and Z. Chen. 2017. A nonconforming virtual element method for the Stokes problem on general meshes. Comput. Methods Appl. Mech. Engng. 320:694–711. doi:10.1016/j.cma.2017.03.027
  • Mäntylä, M. 1983. Topological analysis of polygon meshes. Comput-Aided. Des. 15 (4):228–34. doi:10.1016/0010-4485(83)90126-4
  • Mantyla, M. 1984. A note on the modeling space of Euler operators. Comput. Vis. Graph. Image Process. 26 (1):45–60. doi:10.1016/0734-189X(84)90129-4
  • Mantyla, M., and R. Sulonen. 1982. GWB: A solid modeler with Euler operators. IEEE Comput. Grap. Appl. 2 (7):17–31. doi:10.1109/MCG.1982.1674396
  • Manzini, G., A. Cangiani, and O. Sutton. The conforming virtual element method for the convection-diffusion-reaction equation with variable coeffcients. Tech. rep., Los Alamos National Laboratory (LANL), Los Alamos, NM, oct. 2014. doi:10.2172/1159207
  • Mascotto, L. 2018. Ill-conditioning in the virtual element method: Stabilizations and bases. Numer. Methods Part. Different. Eq. 34 (4):1258–81. doi:10.1002/num.22257
  • Miller, W. F., and E. E. Lewis. 1993. Computational methods of neutron transport, 1st ed. La Grange Park, IL: American Nuclear Society.
  • Muller, D., and F. Preparata. 1978. Finding the intersection of two convex polyhedra. Theoretic. Comput. Sci. 7 (2):217–36. doi:10.1016/0304-3975(78)90051-8
  • Mylonakis, A., M. Varvayanni, N. Catsaros, P. Savva, and D. Grigoriadis. 2014. Multi-physics and multi-scale methods used in nuclear reactor analysis. Ann. Nucl. Energy 72:104–19. doi:10.1016/j.anucene.2014.05.002
  • Owens, A., J. Kópházi, and M. D. Eaton. 2017a. Optimal trace inequality constants for interior penalty discontinuous Galerkin discretisations of elliptic operators using arbitrary elements with non-constant Jacobians. Comput. Phys. 350:847–70. doi:10.1016/j.jcp.2017.09.020
  • Owens, A., J. Kópházi, J. Welch, and M. D. Eaton. 2017b. Energy dependent mesh adaptivity of discontinuous isogeometric discrete ordinate methods with dual weighted residual error estimators. Comput. Phys. 335:352–86. doi:10.1016/j.jcp.2017.01.035
  • Owens, A., J. Welch, J. Kópházi, and M. D. Eaton. 2016. Discontinuous isogeometric analysis methods for the first-order form of the neutron transport equation with discrete ordinate (SN) angular discretisation. Comput. Phys. 315:501–35. doi:10.1016/j.jcp.2016.03.060
  • Owens, A., J. Welch, J. Kópházi, and M. D. Eaton. 2017c. An adaptive, hanging-node, discontinuous isogeometric analysis method for the first-order form of the neutron transport equation with discrete ordinate (SN) angular discretisation. Comput. Methods Appl. Mech. Engng. 318:215–41. doi:10.1016/j.cma.2017.01.036
  • Piegl, L., and W. Tiller. 1995. The NURBS book, Monographs in visual communications. Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-97385-7
  • Russo, A. 2016. On the choice of the internal degrees of freedom for the nodal virtual element method in two dimensions. Comput. Math. Appl. 72 (8):1968–76. doi:10.1016/j.camwa.2016.03.016
  • Sanchez, R. 2009. Assembly homogenization techniques for core calculations. Prog. Nucl. Energy 51 (1):14–31. doi:10.1016/j.pnucene.2008.01.009
  • Schmidt, R., R. Wüchner, and K.-U. Bletzinger. 2012. Isogeometric analysis of trimmed NURBS geometries. Comput. Methods Appl. Mech. Engng. 241–244:93–111. doi:10.1016/j.cma.2012.05.021
  • Schneider, T., D. Panozzo, and X. Zhou. 2021. Isogeometric high order mesh generation. Comput. Methods Appl. Mech. Engng. 386:114104. doi:10.1016/j.cma.2021.114104
  • Semenza, L. A., E. E. Lewis, and E. C. Rossow. 1972. The application of the finite element method to the multigroup neutron diffusion equation. Nucl. Sci. Eng. 47 (3):302–10. doi:10.13182/NSE72-A22416
  • Sethian, J. A. 1999. Fast Marching Methods. SIAM Rev. 41 (2):199–235. doi:10.1137/S0036144598347059
  • Sevilla, R., S. Fernández-Méndez, and A. Huerta. 2008. NURBS-enhanced finite element method (NEFEM). Int. J. Numer. Meth. Engng. 76 (1):56–83. doi:10.1002/nme.2311
  • Sevilla, R., S. Fernández-Méndez, and A. Huerta. 2011. 3D NURBS-enhanced finite element method (NEFEM). Int. J. Numer. Meth. Engng. 88 (2):103–25. doi:10.1002/nme.3164
  • Smith, K. S. 1986. Assembly homogenization techniques for light water reactor analysis. Prog. Nucl. Energy 17 (3):303–35. doi:10.1016/0149-1970(86)90035-1
  • Smith, K. S. 2017. Nodal diffusion methods and lattice physics data in LWR analyses: Understanding numerous subtle details. Prog. Nucl. Energy 101:360–9. doi:10.1016/j.pnucene.2017.06.013
  • Sommariva, A., and M. Vianello. 2007. Product Gauss cubature over polygons based on Green’s integration formula. Bit Numer. Math. 47 (2):441–53. doi:10.1007/s10543-007-0131-2
  • Stimpson, S., K. Clarno, R. Pawlowski, R. Gardner, J. Powers, B. Collins, A. Toth, S. Novascone, S. Pitts, J. Hales, et al. 2020. Coupled fuel performance calculations in VERA and demonstration on Watts Bar unit 1, cycle 1. Ann. Nucl. Energy 145:107554. doi:10.1016/j.anucene.2020.107554
  • Wachspress, E. 1966. Iterative solution of elliptic systems and applications to the neutron diffusion equations of reactor physics. Hoboken, NJ: Prentice-Hall.
  • Wang, Y., and J. Ragusa. 2009. Application of HP adaptivity to the multigroup diffusion equations. Nucl. Sci. Eng. 161 (1):22–48. doi:10.13182/NSE161-22
  • Wang, Y., W. Bangerth, and J. Ragusa. 2009. Three-dimensional h-adaptivity for the multigroup neutron diffusion equations. Prog. Nucl. Energy 51 (3):543–55. doi:10.1016/j.pnucene.2008.11.005
  • Welch, J., J. Kópházi, A. Owens, and M. D. Eaton. 2017a. A geometry preserving, conservative, mesh-to-mesh isogeometric interpolation algorithm for spatial adaptivity of the multigroup, second-order even-parity form of the neutron transport equation. J. Comput. Phys. 347:129–46. doi:10.1016/j.jcp.2017.06.015
  • Welch, J., J. Kópházi, A. Owens, and M. D. Eaton. 2017b. Isogeometric analysis for the multigroup neutron diffusion equation with applications in reactor physics. Ann. Nucl. Energy 101:465–80. doi:10.1016/j.anucene.2016.11.015
  • Wood, J., and M. M. R. Williams. 1984. Recent progress in the application of the finite element method to the neutron transport equation. Prog. Nucl. Energy 14 (1):21–40. doi:10.1016/0149-1970(84)90010-6
  • Xu, G., B. Mourrain, R. Duvigneau, and A. Galligo. 2013a. Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications. Comput-Aided. Des. 45 (2):395–404. doi:10.1016/j.cad.2012.10.022
  • Xu, G., B. Mourrain, R. Duvigneau, and A. Galligo. 2013b. Constructing analysis-suitable parameterization of computational domain from CAD boundary by variational harmonic method. Comput. Phys. 252:275–89. doi:10.1016/j.jcp.2013.06.029