4,071
Views
0
CrossRef citations to date
0
Altmetric
Research Article

On Solution Regularity of the Two-Dimensional Radiation Transfer Equation and Its Implication on Numerical Convergence

References

  • Abramowitz, M., and I. A. Stegun. 1970. Handbook of mathematical functions: With formulas, graphs, and mathematical tables. Dover, New York.
  • Agoshkov, V. 1998. Boundary value problems for transport equations. Boston: Birkhauser.
  • Altaç, Z. 2007. Exact series expansions, recurrence relations, properties and integrals of the generalized exponential integral functions. J. Quant. Spectrosc. Radiat. Transf 104 (3):310–25. doi:10.1016/j.jqsrt.2006.09.002
  • Bell, G. J., and S. Glasstone. 1970. Nuclear reactor theory. New York: Van Nostrand Reinhold Company.
  • Case, K. M., and P. F. Zweifel. 1967. Reading, MA: Linear transport theory. Addison-Wesley Publishing Company, Inc.
  • de Azevedo, F. S., E. Sauter, P. H. A. Konzen, M. Thompson, and L. B. Barichello. 2018. Integral formulation and numerical simulations for the neutron transport equation in X-Y geometry. Ann. Nucl. Energy 112:735–47. doi:10.1016/j.anucene.2017.10.017
  • Egger, H., and M. Schlottbom. 2014. An Lp theory for stationary radiative transfer. Appl. Anal. 93 (6):1283–96. doi:10.1080/00036811.2013.826798
  • Germogenova, T. A. 1969. Local properties of the solution of the transport equation. Dokl. Akad. Nauk SSSR 187 (5):978–81.
  • Golse, F., P.-L. Lions, B. Perthame, and R. Sentis. 1988. Regularity of the Moments of the Solution of a Transport Equation. J. Funct. Anal. 76 (1):110–25. doi:10.1016/0022-1236(88)90051-1
  • Hennebach, E., P. Junghanns, and G. Vainikko. 1995. Weakly singular integral equations with operator-valued Kernels and an application to radiation transfer problems. Integr. Equ. Oper. Theory. 22 (1):37–64. doi:10.1007/BF01195489
  • Johnson, C., and J. Pitkaranta. 1983. Convergence of a fully discrete scheme for two-dimensional neutron transport. SIAM J. Math. Anal. 20 (5):951–66.
  • Larsen, E. W., and W. F. Miller. Jr., 1980. Convergence rates of spatial difference equations for the discrete-ordinates neutron transport equations in slab geometry. Nucl. Sci. Eng. 73 (1):76–83. doi:10.13182/NSE80-3
  • Larsen, E. W. 1982. Spatial Convergence Properties of the Diamond Difference Method in x, y Geometry. Nucl. Sci. Eng. 80 (4):710–713.
  • Larsen, E. W., J. E. Morel, and W. F. Miller. Jr., 1987. Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes. J. Comput. Phys. 69 (2):283–324. doi:10.1016/0021-9991(87)90170-7
  • Latrach, K. 2001. Compactness results for transport equations and applications. Math. Models Methods Appl. Sci. 11 (07):1181–202. doi:10.1142/S021820250100129X
  • Latrach, K., and A. Zeghal. 2012. Existence results for a nonlinear transport equation in bounded geometry on L1-spaces. Appl. Math. Comput. 219 (3):1163–72. doi:10.1016/j.amc.2012.07.026
  • Lewis, E. E., and W. F. Miller. Jr., 1993. Computational methods of neutron transport. La Grange Park, Illinois: American Nuclear Society.
  • Madsen, N. K. 1972. Convergence of singular difference approximations for the discrete ordinate equations in x−y geometry. Math. Comput. 26 (117):45–50.
  • Mikhlin, S. G., and S. Prossdorf. 1986. Singular integral operators. Berlin: Springer-Verlag.
  • Mikhlin, S. G. 1965. Multidimensional singular integrals and integral equations. Oxford: Pergamon Press.
  • Miller, J., J. H. O’Riordan, and G. I. Shishkin. 2012. Fitted numerical methods for singular perturbation problems. Singapore: World Scientific.
  • Pitkäranta, J. 1980. Estimates for the derivatives of solutions to weakly singular fredholm integral equations. SIAM J. Math. Anal. 11 (6):952–68. doi:10.1137/0511085
  • Stynes, M., and D. Stynes. 2018. Convection-diffusion problems: An introduction to their analysis and numerical solution. Providence, RI: American Mathematical Society.
  • Vainikko, G. 1993. Multidimensional weakly singular integral equations. Berlin Heidelberg: Springer-Verlag.
  • Vladimirov, V. S. 1963. Mathematical problems in the one-velocity theory of particle transport. (Translated from, 61, 1961). Chalk River, Ontario: Atomic Energy of Canada Limited.
  • Wang, D. 2019. The asymptotic diffusion limit of numerical schemes for the SN transport equation. Nucl. Sci. Eng. 193 (12):1339–54. doi:10.1080/00295639.2019.1638660
  • Wang, D. 2022. Error analysis of numerical methods for thick diffusive neutron transport problems on Shishkin Mesh. 2022. Proceedings of International Conference on Physics of Reactors 2022 (PHYSOR 2022), Pittsburgh, PA, USA, May 15-20, 2022, 977986.
  • Wang, D., and T. Byambaakhuu. 2021. A new proof of the asymptotic diffusion limit of the SN neutron transport equation. Nucl. Sci. Eng. 195 (12):1347–58. doi:10.1080/00295639.2021.1924048
  • Wang, D., T. Byambaakhuu, S. Schunert, and Z. Wu. 2019. Solving the SN transport equation using high order Lax-Friedrichs WENO fast sweeping methods. Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering 2019 (M&C 2019), Portland, OR, USA, August 25–29, 2019, 61–72.
  • Wang, Y., and J. C. Ragusa. 2009. On the convergence of DGFEM applied to the discrete ordinates transport equation for structured and unstructured triangular meshes. Nucl. Sci. Eng. 163 (1):56–72. doi:10.13182/NSE08-72