3
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhanced Thermoelectric Performance of PbTe Nanocomposites with Ag Nanoinclusions

&

References

  • Ahmad, S., and S. D. Mahanti. 2010. Energy and temperature dependence of relaxation time and Wiedemann-Franz law on PbTe. Phys. Rev. B. 81 (16):165203. doi: 10.1103/PhysRevB.81.165203.
  • Biswas, K., J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis. 2012. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489 (7416):414–8. doi: 10.1038/nature11439.
  • Biswas, K., J. He, Q. Zhang, G. Wang, C. Uher, V. P. Dravid, and M. G. Kanatzidis. 2011. Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 3 (2):160–6. doi:10.1038/nchem.955.
  • Biswas, S., S. Singh, S. Singh, S. Chattopadhyay, K. K. H. De Silva, M. Yoshimura, J. Mitra, and V. B. Kamble. 2021. Selective enhancement in phonon scattering leads to a high thermoelectric figure-of-merit in graphene oxide-encapsulated ZnO nanocomposites. ACS Appl. Mater. Interfaces. 13 (20):23771–86. doi: 10.1021/acsami.1c04125.
  • Dweydari, A. W., and C. H. B. Mee. 1975. Work function measurements on (100) and (110) surfaces of silver. Phys. Stat. Sol. (A) 27 (1):223–30. doi: 10.1002/pssa.2210270126.
  • Efimova, B. A., L. A. Kolomoets, Y. I. Ravich, and T. S. Stavitskaya. 1971. Thermoelectric figure of merit of n-type PbTe. Sov. Phys. Semicond 4 (10):1653.
  • Faleev, S. V., and F. Léonard. 2008. Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Phys. Rev. B. 77 (21):214304. doi: 10.1103/PhysRevB.77.214304.
  • Gurevich, Y., and O. L. Mashkevich. 1989. The electron-phonon drag and transport phenomena in semiconductors. Phys. Rep. 181 (6):327–94. doi: 10.1016/0370-1573(89)90011-2.
  • He, H., W. Qiu, Z. Wang, X. Cui, Y. Zhang, Z. Wang, L. Chen, H. Deng, Y. Sun, L. Zhao, et al. 2020. Enhanced thermoelectric performance of n-type PbTe through the introduction of low dimensional C60 nanodots. J. Alloys Compd. 823:153863. doi: 10.1016/j.jallcom.2020.153863.
  • Heremans, J. P., C. M. Thrush, and D. T. Morelli. 2005. Thermopower enhancement in PbTe with Pb precipitates. J. Appl. Phys. 98 (6):063703. doi: 10.1063/1.2037209.
  • Heremans, J. P., V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder. 2008. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321 (5888):554–7. doi: 10.1126/science.1159725.
  • Ho Lee, M., J. H. Yun, G. Kim, J. E. Lee, S.-D. Park, H. Reith, G. Schierning, K. Nielsch, W. Ko, A.-P. Li, et al. 2019. Synergetic enhancement of thermoelectric performance by selective charge Anderson localization − delocalization transition in n‑type Bi-doped PbTe/Ag2Te nanocomposite. ACS Nano 13 (4):3806–15. doi: 10.1021/acsnano.8b08579.
  • Hsu, K. F., S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, and M. G. Kanatzidis. 2004. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 303 (5659):818–21. doi: 10.1126/science.109296.
  • Kim, Y.-J., L.-D. Zhao, M. G. Kanatzidis, and D. N. Seidman. 2017. Analysis of nanoprecipitates in a na-doped PbTe − SrTe thermoelectric material with a high figure of merit. ACS Appl. Mater. Interfaces 9 (26):21791–7. doi: 10.1021/acsami.7b04098.
  • Liu, M., and W. Ma. 2024. Enhanced thermoelectric performance of PbTe nanocomposites with Sb nanoinclusions. ACS Omega. 9 (15):17097–103. doi: 10.1021/acsomega.3c09241.
  • Mahan, G. D., and J. O. Sofo. 1996. The best thermoelectric. Proc. Natl. Acad. Sci. USA. 93 (15):7436–9. doi: 10.1073/pnas.93.15.7436.
  • Muchtar, A. R., B. Srinivasan, S. L. Tonquesse, S. Singh, N. Soelami, B. Yuliarto, D. Berthebaud, and T. Mor. 2021. Physical insights on the lattice softening driven mid-temperature range thermoelectrics of Ti/Zr-inserted SnTe—An outlook beyond the horizons of conventional phonon scattering and excavation of Heikes’ equation for estimating carrier properties. Adv. Energy Mater. 11 (28):2101122. doi: 10.1002/aenm.202101122.
  • Muthusamy, O., O. Muthusamy, S. Singh, K. Hirata, K. Kuga, S. K. Harish, M. Shimomura, M. Adachi, Y. Yamamoto, M. Matsunami, et al. 2021. Enhancement of the power factor and suppression of lattice thermal conductivity via electronic structure modification and nanostructuring on a Ni- and B-codoped p-type Si–Ge alloy for thermoelectric application. ACS Appl. Electron. Mater. 3 (12):5621–31. doi: 10.1021/acsaelm.1c01075.
  • Nolas, G. S., J. W. Sharp, and H. J. Goldsmid. 2001. Thermoelectrics: Basics principles and new materials developments. Heidelberg, Germany: Springer-Verlag.
  • Paul, B., V. Ajay Kumar, and P. Banerji. 2010. Embedded Ag-rich nanodots in PbTe: Enhancement of thermoelectric properties through energy filtering of the carriers. J. Appl. Phys. 108 (6):064322. doi: 10.1063/1.3488621.
  • Pei, Y., X. Shi, A. LaLonde, H. Wang, L. Chen, and G. Jeffrey Snyder. 2011. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473 (7345):66–9. doi: 10.1038/nature09996.
  • Popescu, A., L. M. Woods, J. Martin, and G. S. Nolas. 2009. Model of transport properties of thermoelectric nanocomposite materials. Phys. Rev. B. 79 (20):205302. doi: 10.1103/PhysRevB.79.205302.
  • Rowe, D. M., and C. M. Bhandari. 1983. Modern thermoelectrics. London: Holt Saunders. https://ci.nii.ac.jp/ncid/BA73236668
  • Singh, S., K. Hirata, D. Byeon, T. Matsunaga, O. Muthusamy, S. Ghodke, M. Adachi, Y. Yamamoto, M. Matsunami, and T. Takeuchi. 2020. Investigation of thermoelectric properties of Ag2SxSe1-x(x = 0.0, 0.2 and 0.4). J. Electron. Mater. 49:2846–54. doi: 10.1007/s11664-019-07879-z.
  • Singh, S., S. Singh, B. Srinivasan, A. Kumar, N. Bijewar, T. Mori, T. Takeuchi, and J.-F. Halet. 2023. First-principles study on electronic and thermal transport properties of FeRuTiX quaternary Heusler compounds (X = Si, Ge, Sn). Zeitschrift Anorg. Allge. Chem. 649 (15):e202300080. doi:10.1002/zaac.202300080.
  • Snyder, G. J., and E. S. Toberer. 2008. Complex thermoelectric materials. Nat. Mater. 7 (2):105–14. doi: 10.1038/nmat2090.
  • Spicer, W. E., and G. T. Lapeyre. 1965. Photoemission investigation of the band structure of PbTe. Phys. Rev. 139 (2A):A565–A569. doi: 10.1103/PhysRev.139.A565.
  • Tan, G., F. Shi, S. Hao, L.-D. Zhao, H. Chi, X. Zhang, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis. 2016. Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe. Nat. Commun. 7 (1):12167. doi: 10.1038/ncomms12167.
  • Venkatasubramanian, R., E. Siivola, T. Colpitts, and B. O'Quinn. 2001. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413 (6856):597–602. doi: 10.1038/35098012.
  • Yadav, K., S. Singh, O. Muthuswamy, T. Takeuchi, and K. Mukherjee. 2022. Unravelling the phonon scattering mechanism in half-Heusler alloys ZrCo1−xIrxSb (x = 0, 0.1 and 0.25). J. Phys. Condens. Matter. 34 (3):035702. doi: 10.1088/1361-648X/ac30b5.
  • Yadav, K., S. Singh, T. Takeuchi, and K. Mukherjee. 2021. Optical phonon mode assisted thermal conductivity in p-type ZrIrSb half-Heusler alloy: A combined experimental and computational study. J. Phys. D: Appl. Phys. 54 (49):495303. doi: 10.1088/1361-6463/ac1dd8.
  • Yang, X. H., and X. Y. Qin. 2010. Giant scattering parameter and enhanced thermoelectric properties originating from synergetic scattering of electrons in semiconductors with metal nanoinclusions. Appl. Phys. Lett. 97 (19):192101. doi: 10.1063/1.3515298.
  • Zhang, Y., Z. Li, S. Singh, A. Nozariasbmarz, W. Li, A. Genç, Y. Xia, L. Zheng, S. H. Lee, S. K. Karan, et al. 2023. Defect-engineering-stabilized AgSbTe2 with high thermoelectric performance. Adv. Mater. 35 (11):e2208994. doi: 10.1002/adma.202208994.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.