2,107
Views
9
CrossRef citations to date
0
Altmetric
Research Paper

Modeling thermal contact resistance at the finger-object interface

ORCID Icon
Pages 85-95 | Received 19 Sep 2018, Accepted 20 Nov 2018, Published online: 10 Dec 2018

References

  • Ho H-N. Material recognition based on thermal cues: mechanisms and applications. Temperature. 2018;5:36–55. DOI:10.1080/23328940.2017.1372042
  • Zhang H, Hedge A. Overview of human thermal responses to warm surfaces of electronic devices. J Electron Packag. 2017;139:30802.
  • Roy SK, An equation for estimating the maximum allowable surface temperatures of electronic equipment, in Semiconductor thermal measurement and management symposium (SEMI-THERM), 2011 27th annual IEEE; San Jose, CA; 2011, pp. 54–62.
  • Sripada A, Rohlfing M, Vijaendreh R, et al. Use of a gel finger to feel the skin temperatures of a smartphone. J Electron Packag. 2016;138:31001.
  • Yin Y, Cui Y, Li Y, et al. Thermal management of flexible wearable electronic devices integrated with human skin considering clothing effect. Appl Therm Eng. 2018;144:504–511.
  • Li Y, Gao Y, Song J. Recent advances on thermal analysis of stretchable electronics. Theor Appl Mech Lett. 2016;6:32–37.
  • Jones LA, Ho H-N. Warm or cool, large or small? The challenge thermal displays. IEEE Trans Haptics. 2008;1:53–70.
  • Cabibihan J-J, Joshi D, Srinivasa YM, et al. Illusory sense of human touch from a warm and soft artificial hand. IEEE Trans Neural Syst Rehabil Eng. 2015;23:517–527.
  • Ho H-N, Jones LA, Thermal model for hand-object interactions, in Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2006 14th symposium on, Alexandria, VA; 2006, pp. 461–467.
  • Suarez F, Parekh DP, Ladd C, et al. Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics. Appl Energy. 2017;202:736–745.
  • Suarez F, Nozariasbmarz A, Vashaee D, et al. Designing thermoelectric generators for self-powered wearable electronics. Energy Environ Sci. 2016;9:2099–2113.
  • Maamir F, Guiatni M, Morsly Y, et al., Pso algorithm based thermal contact resistance estimation for variable force hand/object interaction, in Control and Automation (MED), 2014 22nd Mediterranean Conference of, Palermo, Italy; 2014, pp. 499–504.
  • Tarabini M, Saggin B, Scaccabarozzi D. Measurement of the heat removed by devices for skin tags treatment. IEEE Transactions on Instrumentation and Measurement. 2015;64:3354–3360. https://ieeexplore.ieee.org/abstract/document/7173045
  • Saggin B, Tarabini M, Lanfranchi G. A device for the skin–contact thermal resistance measurement. IEEE Trans Instrum Meas. 2012;61:489–495.
  • Tiest WMB, An experimentally verified model of the perceived’coldness’ of objects, in EuroHaptics Conference, 2007 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics 2007. Second Joint, Tsukaba, Japan; 2007, pp. 61–65.
  • Tiest WMB, Kappers AML. Thermosensory reversal effect quantified. Acta Psychol (Amst). 2008;127:46–50.
  • Tiest WMB, Kappers AML. Tactile perception of thermal diffusivity. Atten Percept Psychophys. 2009;71:481–489.
  • Tiest WMB. Tactual perception of material properties. Vision Res. 2010;50:2775–2782.
  • Gabardi M, Chiaradia D, Leonardis D, et al., A high performance thermal control for simulation of different materials in a fingertip haptic device, in International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, Pisa, Italy; 2018, pp. 313–325.
  • Osawa Y, Katsura S, Thermal impedance control for thermal rendering technique, in Industrial electronics society, IECON 2015-41st Annual conference of the IEEE, Yokohama, Japan; 2015, pp. 4015–4020.
  • Cooper MG, Mikic BB, Yovanovich MM. Thermal contact conductance. Int J Heat Mass Transf. 1969;12:279–300.
  • Yovanovich MM. Thermal contact correlations. AIAA Pap. 1982;81:83–95.
  • Bejan A, Kraus AD. Heat Transfer Handbook. Vol. 1. Hoboken, NJ: John Wiley & Sons; 2003.
  • Bahrami M, Culham JR, Yovanovich MM. Modeling thermal contact resistance: a scale analysis approach. J Heat Transfer. 2004;126:896–905.
  • Holm R. Electrical Contacts Handbook. Vol. 15. Splinger; 1958. p. 1023–1029.
  • Yovanovich MM. Four decades of research on thermal contact, gap, and joint resistance in microelectronics. IEEE Trans Components Packag Technol. 2005;28:182–206.
  • Ho H-N, Jones LA. Modeling the thermal responses of the skin surface during hand-object interactions. J Biomech Eng. 2008;130:21005.
  • Parihar SK, Wright NT. Thermal contact resistance at elastomer to metal interfaces. Int Commun Heat Mass Transf. 1997;24:1083–1092.
  • Prasher RS, Matayabas JC. Thermal contact resistance of cured gel polymeric thermal interface material. IEEE Trans Components Packag Technol. 2004;27:702–709.
  • Prasher RS, Chiu C-P. Thermal interface materials. In: Lu D, Wong CP, editors. Materials for Advanced Packaging. Cham, CH: Springer; 2017. p. 511–535.
  • Holt B, Tripathi A, Morgan J. Viscoelastic response of human skin to low magnitude physiologically relevant shear. J Biomech. 2008;41:2689–2695.
  • Johnson KL. Contact Mechanics. Cambridge, UK: Cambridge University Press; 1987.
  • Yovanovich MM, Marotta EE. Thermal spreading and contact resistances. Heat Transf Handb. 2003;1:261–394.
  • Dellon ES, Keller K, Moratz V, et al. The relationships between skin hardness, pressure perception and two-point discrimination in the fingertip. J Hand Surg Am. 1995;20:44–48.
  • Eberhart RC, Shitzer A. Heat Transfer in Medicine and Biology: Analysis and Applications. Vol. 2. New York, NY: Springer Science & Business Media; 2012.
  • Galie J, Ho H-N, Jones LA, Influence of contact conditions on thermal responses of the hand, in EuroHaptics conference, 2009 and symposium on haptic interfaces for virtual environment and teleoperator systems. World haptics 2009. Third Joint, Salt Lake City, UT; 2009, pp. 587–592.
  • Oberg E, Jones FD, Horton HL, et al. Machinery’s Handbook. New York: Industrial Press; 2000.
  • Thunman H, Leckner B. Thermal conductivity of wood—models for different stages of combustion. Biomass Bioenergy. 2002;23:47–54.
  • Avdelidis NP, Delegou ET, Almond DP, et al. Surface roughness evaluation of marble by 3D laser profilometry and pulsed thermography. NDT E Int. 2004;37:571–575.
  • López-Arce P, Varas-Muriel MJ, Fernández-Revuelta B, et al. Artificial weathering of Spanish granites subjected to salt crystallization tests: surface roughness quantification. Catena. 2010;83:170–185.
  • Papp EA, Csiha C. Contact angle as function of surface roughness of different wood species. Surf Interfaces. 2017;8:54–59.
  • Vazquez P, Alonso JF. Colour and roughness measurement as NDT to evaluate ornamental granite decay. Procedia Earth Planet Sci. 2015;15:213–218.
  • Alkhwaji A, Vick B, Diller T. New mathematical model to estimate tissue blood perfusion, thermal contact resistance and core temperature. J Biomech Eng. 2012;134:81004.
  • Bartlett MD, Kazem N, Powell-Palm MJ, et al. High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc Natl Acad Sci USA. 2017;114:2143–2148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.