465
Views
1
CrossRef citations to date
0
Altmetric
Priority Review

Neuroimaging of pleasantness and unpleasantness induced by thermal stimuli

ORCID Icon
Pages 342-350 | Received 07 Jan 2021, Accepted 19 Jul 2021, Published online: 14 Sep 2021

References

  • Hensen JLM. Literature review on thermal comfort in transient conditions. Build Environ. 1990;25(4):309–316.
  • Taylor P, Fuller RJ, Luther MB Energy use and thermal comfort in a rammed earth office building. Energy and Buildings, 2008 Dec; 40(5), 793–800.
  • Wagner A, Gossauer E, Moosmann C, et al. Thermal comfort and workplace occupant satisfaction-Results of field studies in German low energy office buildings. Energy Build. 2007 Jul;39(7):758–769.
  • Cabanac M. Physiological role of pleasure. Science. 1971 Sep;173(4002):1103–1107. PMID: 5098954.
  • De Dear R. Thermal comfort in practice. PMID: 15330769 Indoor Air. 2004;14Suppl 7:32–39.
  • Attia M, Engel P. Thermoregulatory set point in patients with spinal cord injuries (spinal man). Paraplegia. 1983 Aug;21(4):233–248. PMID: 6622050.
  • De Dear R. Revisiting an old hypothesis of human thermal perception: alliesthesia. Building Research and Information. 2011 Mar;39(2):108–117.
  • Kingma BR, Frijns AJ, Schellen L, et al. Beyond the classic thermoneutral zone: including thermal comfort. Temperature (Austin). 2014 Jul;1(2):142–149. doi: https://doi.org/10.4161/temp.29702 PMID: 27583296; PMCID: PMC4977175.
  • Humphreys MA, Nicol JF. The validity of ISO-PMV for predicting comfort votes in every-day thermal environments. Energy Build. 2002 Jul;34(6):667–684.
  • Bradley MM, Codispoti M, Cuthbert BN, et al. Emotion and motivation I: defensive and appetitive reactions in picture processing. Emotion. 2001 Sep;1(3):276–298. PMID: 12934687.
  • Kühn S, Gallinat J. The neural correlates of subjective pleasantness. Neuroimage. 2012 May;61(1):289–294.
  • Attia M. Thermal pleasantness and temperature regulation in man. PMID: 6504416 Neurosci Biobehav Rev. 1984;83:335–342.
  • Kanosue K, Sadato N, Okada T, et al. Brain activation during whole body cooling in humans studied with functional magnetic resonance imaging. Neurosci Lett. 2002 Aug;329(2):157–160. PMID: 12165401.
  • Nagashima K, Tokizawa K, Marui S. 2018. Thermal comfort. In handbook of clinical neurology Handbook of Clinical Neurology. Elsevier B.V., 249–260. https://doi.org/10.1016/B978-0-444-63912-7.00015-1.
  • Romanovsky AA. Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am J Physiol Regul Integr Comp Physiol. 2007 Jan;292(1):R37–46.
  • Moulton EA, Pendse G, Becerra LR, et al. BOLD responses in somatosensory cortices better reflect heat sensation than pain. J Neurosci. 2012 Apr;32(17):6024–6031.
  • Johnstone T, Salomons TV, Backonja MM, et al. Turning on the alarm: the neural mechanisms of the transition from innocuous to painful sensation. Neuroimage. 2012 Jan;59(2):1594–1601.
  • Bornhövd K, Quante M, Glauche V, et al. Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain. 2002 Jun;125(Pt 6):1326–1336. PMID: 12023321.
  • Büchel C, Bornhovd K, Quante M, et al. Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. J Neurosci. 2002 Feb;22(3):970–976. PMID: 11826125; PMCID: PMC6758484.
  • Becerra L, Harris W, Joseph D, et al. Diffuse optical tomography of pain and tactile stimulation: activation in cortical sensory and emotional systems. Neuroimage. 2008 Jun;41(2):252–259.
  • Becerra LR, Breiter HC, Stojanovic M, et al. Human brain activation under controlled thermal stimulation and habituation to noxious heat: an fMRI study. Magn Reson Med. 1999 May;41(5):1044–1057. PMID: 10332889.
  • Chen JI, Ha B, Bushnell MC, et al. Differentiating noxious- and innocuous-related activation of human somatosensory cortices using temporal analysis of fMRI. J Neurophysiol. 2002 Jul;88(1):464–474. PMID: 12091568.
  • Becerra L, Harris W, Grant M, et al. Diffuse optical tomography activation in the somatosensory cortex: specific activation by painful vs. non-painful thermal stimuli. PLoS One. 2009 Nov;4(11):e8016. PMID: 19956637; PMCID: PMC2778627.
  • Disbrow E, Buonocore M, Antognini J, et al. Somatosensory cortex: a comparison of the response to noxious thermal, mechanical, and electrical stimuli using functional magnetic resonance imaging. PMC6873382 Hum Brain Mapp. 1998;63:150–159.
  • Yücel MA, Aasted CM, Petkov MP, et al. Specificity of hemodynamic brain responses to painful stimuli: a functional near-infrared spectroscopy study. Sci Rep. 2015 Mar;5(5):https://doi.org/10.1038/srep09469
  • Moulton EA, Keaser ML, Gullapalli RP, et al. Regional intensive and temporal patterns of functional MRI activation distinguishing noxious and innocuous contact heat. J Neurophysiol. 2005 Apr;93(4):2183–2193.
  • Iannetti GD, Truini A, Romaniello A, et al. Evidence of a specific spinal pathway for the sense of warmth in humans. J Neurophysiol. 2003 Jan;89(1):562–570. PMID: 12522202.
  • Olausson H, Charron J, Marchand S, et al. Feelings of warmth correlate with neural activity in right anterior insular cortex. Neurosci Lett. 2005 Nov;389(1):1–5.
  • Casey KL, Minoshima S, Morrow TJ, et al. Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. J Neurophysiol. 1996 Jul;76(1):571–581. PMID: 8836245.
  • Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 2002 Aug;3(8):655–666. PMID: 12154366.
  • Craig AD. Central neural substrates involved in temperature discrimination, thermal pain, thermal comfort, and thermoregulatory behavior. Handb Clin Neurol. 2018;156:317–338. PMID: 30454598.
  • Tseng MT, Tseng WY, Chao CC, et al. Distinct and shared cerebral activations in processing innocuous versus noxious contact heat revealed by functional magnetic resonance imaging. Hum Brain Mapp. 2010 May;31(5):743–757. PMID: 19823988; PMCID: PMC6870753.
  • Davis KD, Pope GE, Crawley AP, et al. Perceptual illusion of “paradoxical heat” engages the insular cortex. J Neurophysiol. 2004 Aug;92(2):1248–1251. PMID: 15277602.
  • Craig AD, Chen K, Bandy D, et al. Thermosensory activation of insular cortex. Nat Neurosci. 2000 Feb;3(2):184–190. PMID: 10649575.
  • Critchley HD, Wiens S, Rotshtein P, et al. Neural systems supporting interoceptive awareness. Nat Neurosci. 2004 Feb;7(2):189–195. Epub 2004 Jan. PMID: 14730305.
  • Raison CL, Hale MW, Williams LE, et al. Somatic influences on subjective well-being and affective disorders: the convergence of thermosensory and central serotonergic systems. Front Psychol. 2015 Jan;5:1580.
  • Schweiker M, Huebner GM, Kingma BRM, et al. Drivers of diversity in human thermal perception - A review for holistic comfort models. Temperature. 2018 Oct;5(4):308–342. doi: https://doi.org/10.1080/23328940.2018.1534490.
  • Berridge KC, Kringelbach ML. Pleasure systems in the brain. Neuron. 2015 May;86(3):646–664. PMID: 25950633; PMCID: PMC4425246.
  • Schlader ZJ, Stannard SR, Mündel T. Human thermoregulatory behavior during rest and exercise - a prospective review. Physiol Behav. 2010 Mar;99(3):269–275.
  • Francis S, Rolls ET, Bowtell R, et al. The representation of pleasant touch in the brain and its relationship with taste and olfactory areas. Neuroreport. 1999;10(3):453–459.
  • Kringelbach ML, Berridge KC. The neuroscience of happiness and pleasure. Soc Res (New York). 2010 Jul;77(2):659–678. PMID: 22068342; PMCID: PMC3008658.
  • Castro DC, Cole SL, Berridge KC. Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry. Front Syst Neurosci. 2015 Jun;9:90.
  • Smith KS, Tindell AJ, Aldridge JW, et al. Ventral pallidum roles in reward and motivation. Behav Brain Res. 2009 Jan;196(2):155–167. Epub 2008 Oct 8. PMID: 18955088; PMCID: PMC2606924.
  • Tanaka SC, Doya K, Okada G, et al. Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nat Neurosci. 2004 Aug;7(8):887–893.
  • Rolls ET. Précis of The brain and emotion. Behav Brain Sci. 2000 Apr;23(2):177–191. PMID: 11301577.
  • Kringelbach ML. The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci. 2005 Sep;6(9):691–702. PMID: 16136173.
  • Kahnt T, Heinzle J, Park SQ, et al. The neural code of reward anticipation in human orbitofrontal cortex. Proc Natl Acad Sci U S A. 2010 Mar;107(13):6010–6015.
  • Kringelbach ML, Berridge KC. Towards a functional neuroanatomy of pleasure and happiness. Trends Cogn Sci. 2009 Nov;13(11):479–487. Epub 2009 Sep 24. PMID: 19782634; PMCID: PMC2767390.
  • Damasio A, Damasio H, Tranel D, et al. Persistence of feelings and sentience after bilateral damage of the insula. Cereb Cortex. 2013 Apr;23(4):833–846. Epub 2012 Apr 3. PMID: 22473895; PMCID: PMC3657385.
  • Schlaepfer TE, Cohen MX, Frick C, et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology. 2008 Jan;33(2):368–377. Epub 2007 Apr 11. PMID: 17429407.
  • Krause M, German PW, Taha SA, et al. A pause in nucleus accumbens neuron firing is required to initiate and maintain feeding. J Neurosci. 2010 Mar;30(13):4746–4756. PMID: 20357125; PMCID: PMC2878763.
  • Mahler SV, Berridge KC. What and when to “want”? Amygdala-based focusing of incentive salience upon sugar and sex. Psychopharmacology (Berl). 2012 Jun;221(3):407–426.
  • Adinoff B. Neurobiologic processes in drug reward and addiction. Harv Rev Psychiatry. 2004 Nov-Dec;12(6):305–320. PMID: 15764467; PMCID PMC1920543.
  • Berridge KC, Kringelbach ML. Neuroscience of affect: brain mechanisms of pleasure and displeasure. Curr Opin Neurobiol. 2013 Jun;23(3):294–303. Epub 2013 Jan 31. PMID: 23375169; PMCID: PMC3644539.
  • Tritsch NX, Ding JB, Sabatini BL. Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature. 2012 Oct;490(7419):262–266.
  • Robinson TE, Berridge KC. Review. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond B Biol Sci. 2008 Oct;363(1507):3137–3146. PMID: 18640920; PMCID: PMC2607325.
  • Rolls ET, Grabenhorst F, Parris BA. Warm pleasant feelings in the brain. Neuroimage. 2008 Jul;41(4):1504–1513.
  • McCabe C, Rolls ET, Bilderbeck A, et al. Cognitive influences on the affective representation of touch and the sight of touch in the human brain. Soc Cogn Affect Neurosci. 2008 Jun;3(2):97–108.
  • Grabenhorst F, Rolls ET, Margot C, et al. How pleasant and unpleasant stimuli combine in different brain regions: odor mixtures. J Neurosci. 2007 Dec;27(49):13532–13540.
  • Grabenhorst F, Rolls ET, Bilderbeck A. How cognition modulates affective responses to taste and flavor: top-down influences on the orbitofrontal and pregenual cingulate cortices. Cereb Cortex. 2008;18(7):1549–1559.
  • Rolls ET, O’Doherty J, Kringelbach ML, et al. Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. Cereb Cortex. 2003 Mar;13(3):308–317.
  • Berridge KC, Kringelbach ML. Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology (Berl). 2008 Aug;199(3):457–480. Epub 2008 Mar 3. PMID: 18311558; PMCID: PMC3004012.
  • Yagishita T, Sadato N, Okada T, et al. Brain activation by thermal stimulation in humans studied with fMRI. In: Yutaka T, Tadakatsu O, editors Elsevier Ergonomics Book Series. Vol. 3. 2005; p. 17–20.
  • Farrell MJ, Johnson J, McAllen R, et al. Brain activation associated with ratings of the hedonic component of thermal sensation during whole-body warming and cooling. J Therm Biol. 2011 Jan;36(1):57–63.
  • Farrell MJ, Trevaks D, McAllen RM. Preoptic activation and connectivity during thermal sweating in humans. Temperature. 2014 Jul;1(2):135–141. doi: https://doi.org/10.4161/temp.29667
  • Vogt BA. Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci. 2005 Jul;6(7):793–800. PMID: 15995724; PMCID: PMC2659949.
  • Egan GF, Johnson J, Farrell M, et al. Cortical, thalamic, and hypothalamic responses to cooling and warming the skin in awake humans: a positron-emission tomography study. Proc Natl Acad Sci U S A. 2005 Apr;102(14):5262–5267.
  • Almeida MC, Steiner AA, Branco LG, et al. Neural substrate of cold-seeking behavior in endotoxin shock. PLoS One. 2006 Dec;1(1):e1. PMID: 17183631; PMCID: PMC1762328.
  • VandenBos GR. Apa Dictionary of Psychology. Washington, DC: American Psychological Association; 2007. ( Print).
  • Cheng Y, Niu J, Gao N. Thermal comfort models: a review and numerical investigation. Build Environ. 2011 Jun;47(1):13–22.
  • Kadohisa M, Rolls ET, Verhagen JV. Orbitofrontal cortex: neuronal representation of oral temperature and capsaicin in addition to taste and texture. PMID: 15219683 Neuroscience. 2004;1271:207–221.
  • Kadohisa M, Verhagen JV, Rolls ET. The primate amygdala: neuronal representations of the viscosity, fat texture, temperature, grittiness and taste of foods. PMID: 15780464 Neuroscience. 2005;1321:33–48.
  • Konishi M, Nagashima K, Asano K, et al. Attenuation of metabolic heat production and cold-escape/warm-seeking behaviour during a cold exposure following systemic salt loading in rats. J Physiol. 2003 Sep;551(Pt 2):713–720.
  • Ongür D, Price JL. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex. 2000 Mar;10(3):206–219. PMID: 10731217.
  • Verhagen JV, Kadohisa M, Rolls ET. Primate insular/opercular taste cortex: neuronal representations of the viscosity, fat texture, grittiness, temperature, and taste of foods. J Neurophysiol. 2004 Sep;92(3):562–570. PMID: 15331650.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.