304
Views
2
CrossRef citations to date
0
Altmetric
Comprehensive Review

A molecular perspective on identifying TRPV1 thermosensitive regions and disentangling polymodal activation

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 67-101 | Received 21 Nov 2020, Accepted 16 Sep 2021, Published online: 26 Oct 2021

References

  • Garami A, Shimansky YP, Rumbus Z, et al. Hyperthermia induced by transient receptor potential vanilloid-1 (TRPV1) antagonists in human clinical trials: insights from mathematical modeling and meta-analysis. Pharmacol Ther. 2020;208:107474.
  • Arsenault P, Chiche D, Brown W, et al. NEO6860, modality-selective TRPV1 antagonist: a randomized, controlled, proof-of-concept trial in patients with osteoarthritis knee pain. Pain Rep. 2018;3(6):e696.
  • Yao J, Liu B, Qin F. Kinetic and energetic analysis of thermally activated TRPV1 channels. Biophys J. 2010;99(6):1743–1753.
  • Kim M, Sisco NJ, Hilton JK, et al. Evidence that the TRPV1 S1-S4 membrane domain contributes to thermosensing. Nat Commun. 2020;11(1):4169.
  • Aneiros E, Cao L, Papakosta M, et al. The biophysical and molecular basis of TRPV1 proton gating. EMBO J. 2011;30(6):994–1002.
  • McIntyre P, McLatchie LM, Chambers A, et al. Pharmacological differences between the human and rat vanilloid receptor 1 (VR1). BrJ Pharmacol. 2001;132(5):1084–1094.
  • Caterina MJ, Schumacher MA, Tominaga M, et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389(6653):816–824.
  • Cao E, Cordero-Morales JF, Liu B, et al. TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids. Neuron. 2013;77(4):667–679.
  • Jordt SE, Julius D. Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell. 2002;108(3):421–430.
  • Mayer ML, Westbrook GL. Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol. 1987;394(1):501–527.
  • Vandewauw I, De Clercq K, Mulier M, et al. A TRP channel trio mediates acute noxious heat sensing. Nature. 2018;555(7698):662–666.
  • Vilar B, Tan C-H, McNaughton PA. Heat detection by the TRPM2 ion channel. Nature. 2020;584(7820):E5–E12.
  • Mulier M, Vandewauw I, Vriens J, et al. Reply to: heat detection by the TRPM2 ion channel. Nature. 2020;584(7820):E13–E15.
  • Yonghak P, Miyata S, Kurganov E. TRPV1 is crucial for thermal homeostasis in the mouse by heat loss behaviors under warm ambient temperature. Sci Rep. 2020;10(1):1–12.
  • Gavva NR, Treanor JJS, Garami A, et al. Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain. 2008;136(1–2):202–210.
  • Caterina MJ, Leffler A, Malmberg AB, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000;288(5464):306–313.
  • Julius D. TRP channels and pain. Annu Rev Cell Dev Biol. 2013;29(1):355–384.
  • Song J, Kang J, Lin B, et al. Mediating role of TRPV1 ion channels in the co-exposure to PM2.5 and formaldehyde of balb/c mice asthma model. Sci Rep. 2017;7(1):1–12.
  • Choi JY, Lee HY, Hur J, et al. TRPV1 blocking alleviates airway inflammation and remodeling in a chronic asthma murine model. Allergy, Asthma Immunol Res. 2018;10(3):216–224.
  • Engler A, Aeschlimann A, Simmen BR, et al. Expression of transient receptor potential vanilloid 1 (TRPV1) in synovial fibroblasts from patients with osteoarthritis and rheumatoid arthritis. Biochem Biophys Res Commun. 2007;359(4):884–888.
  • Hsieh WS, Kung CC, Huang SL, et al. TDAG8, TRPV1, and ASIC3 involved in establishing hyperalgesic priming in experimental rheumatoid arthritis. Sci Rep. 2017;7(1):1–14.
  • Hoffmeister C, Silva MA, Rossato MF, et al. Participation of the TRPV1 receptor in the development of acute gout attacks. Rheumatology. 2014;53(2):240–249.
  • Csekő K, Beckers B, Keszthelyi D, et al. Role of TRPV1 and TRPA1 ion channels in inflammatory bowel diseases: potential therapeutic targets? Pharmaceuticals. 2019;12(2):1–19.
  • Silva RO, Bingana RD, Sales TMAL, et al. Role of TRPV1 receptor in inflammation and impairment of esophageal mucosal integrity in a murine model of nonerosive reflux disease. Neurogastroenterol Motil. 2018;30(8):1–8.
  • Guarino MPL, Cheng L, Ma J, et al. Increased TRPV1 gene expression in esophageal mucosa of patients with non-erosive and erosive reflux disease. Neurogastroenterol Motil. 2010;22(7):746–751, e219.
  • Lee JH, Choi CS, Bae IH, et al. A novel, topical, nonsteroidal, TRPV1 antagonist, PAC-14028 cream improves skin barrier function and exerts anti-inflammatory action through modulating epidermal differentiation markers and suppressing Th2 cytokines in atopic dermatitis. J Dermatol Sci. 2018;91(2):184–194.
  • Feng J, Yang P, Mack MR, et al. Sensory TRP channels contribute differentially to skin inflammation and persistent itch. Nat Commun. 2017;8(1):980.
  • Motter AL, Ahern GP. TRPV1-null mice are protected from diet-induced obesity. FEBS Lett. 2008;582(15):2257–2262.
  • Zhang LL, Yan Liu D, Ma LQ, et al. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circ Res. 2007;100(7):1063–1070.
  • Wahlqvist ML, Wattanapenpaiboon N. Hot foods—unexpected help with energy balance? Lancet. 2001;358(9279):348–349.
  • Shi Z, Riley M, Taylor AW, et al. Chilli consumption and the incidence of overweight and obesity in a Chinese adult population. Int J Obes. 2017;41(7):1074–1079.
  • Wang H, Siemens J. TRP ion channels in thermosensation, thermoregulation and metabolism. Temperature. 2015;2(2):178–187. DOI: 10.1080/23328940.2015.1040604
  • Birder LA, Nakamura Y, Kiss S, et al. Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat Neurosci. 2002;5(9):856–860.
  • Birder LA, Kanai AJ, De Groat WC, et al. Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proc Natl Acad Sci U S A. 2001;98(23):13396–13401.
  • Avelino A, Cruz C, Nagy I, et al. Vanilloid receptor 1 expression in the rat urinary tract. Neuroscience. 2002;109(4):787–798.
  • Holzer P. TRP channels in the digestive system. Curr Pharm Biotechnol. 2011;12(1):24–34.
  • Marrone MC, Morabito A, Giustizieri M, et al. TRPV1 channels are critical brain inflammation detectors and neuropathic pain biomarkers in mice. Nat Commun. 2017;8(1):15292.
  • Weber LV, Al-Refae K, Wölk G, et al. Expression and functionality of TRPV1 in breast cancer cells. Breast Cancer Targets Ther. 2016;8:243–252.
  • Prevarskaya N, Zhang L, Barritt G. TRP channels in cancer. Biochim Biophys Acta - Mol Basis Dis. 2007;1772(8):937–946.
  • Romanovsky AA, Almeida MC, Garami A, et al. The transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not. Pharmacol Rev. 2009;61(3):228–261.
  • Liao M, Cao E, Julius D, et al. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature. 2013;504(7478):107–112.
  • Cao E, Liao M, Cheng Y, et al. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature. 2013;504(7478):113–118.
  • Gao Y, Cao E, Julius D, et al. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature. 2016;534(7607):347–351.
  • Kwon DH, Zhang F, Suo Y, et al. Heat-dependentopening of TRPV1 in the presence of capsaicin. Nat Struct Mol Biol. 2021July;28:554–563.
  • Jara-Oseguera A, Huffer KE, Swartz KJ. The ion selectivity filter is not an activation gate in TRPV1-3 channels. Elife. 2019;8:1–27.
  • Feng Q. Temperature sensing by thermal TRP channels: thermodynamic basis and molecular insights. In León D. Islas, Feng Qin (eds) : Current topics in membranes. Vol. 74. 2014. p. 19–50. Academic Press, Cambridge Massachusetts: Elsevier. https://doi.org/10.1016/B978-0-12-800181-3.00002-6
  • Hilton JK, Kim M, Van Horn WD. Structural and evolutionary insights point to allosteric regulation of TRP ion channels. Acc Chem Res. 2019;52(6):1643–1652.
  • Lukacs V, Rives J-M, Sun X, et al. Promiscuous activation of transient receptor potential vanilloid 1 (TRPV1) channels by negatively charged intracellular lipids. J Biol Chem. 2013;288(49):35003–35013.
  • Sun X, Zakharian E. Regulation of the temperature-dependent activation of transient receptor potential vanilloid 1 (TRPV1) by phospholipids in planar lipid bilayers. J Biol Chem. 2015;290(8):4741–4747.
  • Zhang F, Jara-Oseguera A, Chang TH, et al. Heat activation is intrinsic to the pore domain of TRPV1. Proc Natl Acad Sci U S A. 2017;115(2):E317–E324.
  • Liu B, Hui K, Qin F. Thermodynamics of heat activation of single capsaicin ion channels VR1. Biophys J. 2003;85(5):2988–3006.
  • Zidovetzki R, Levitan I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta - Biomembr. 2007;1768(6):1311–1324.
  • García-Ávila M, Islas LD. What is new about mild temperature sensing? A review of recent findings. Temperature. 2019;6(2):132–141. DOI: 10.1080/23328940.2019.1607490
  • Raddatz N, Castillo JP, Gonzalez C, et al. Temperature and voltage coupling to channel opening in transient receptor potential melastatin 8 (TRPM8). J Biol Chem. 2014;289(51):35438–35454.
  • Grandl J, Kim SE, Uzzell V, et al. Temperature-induced opening of TRPV1 ion channel is stabilized by the pore domain. Nat Neurosci. 2010;13(6):708–714.
  • Běhrádek J. Temperature coefficients in biology. Biol Rev. 1930;5(1):30–58.
  • Neven LG. Physiological responses of insects to heat. Postharvest Biol Technol. 2000;21(1):103–111.
  • Hoffmann KH. 1985. Environmental physiology and biochemistry of insects. 1st ed ed. Berlin Heidelberg: Springer Berlin Heidelberg; DOI:10.1007/978-3-642-70020-0
  • Gillooly JF, Brown JH, West GB, et al. Effects of size and temperature on metabolic rate. Science. 2001;293(5538):2248–2251.
  • Dell AI, Pawar S, Savage VM. Systematic variation in the temperature dependence of physiological and ecological traits. Proc Natl Acad Sci U S A. 2011;108(26):10591–10596.
  • Cossins AR, Bowler K. Temperature biology of animals. London: Chapman and Hall; 1987.
  • Clapham DE, Miller C. A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels. Proc Natl Acad Sci U S A. 2011;108(49):19492–19497.
  • Hille B. Ion channels of excitable membranes. Third Edit ed. Sunderland Mass: Sinauer Associates, Inc; 2001.
  • Carrasquel-Ursulaez W, Moldenhauer H, Castillo JP, et al. Biophysical analysis of thermosensitive TRP channels with a special focus on the cold receptor TRPM8. Temperature. 2015;2(2):188–200. DOI: 10.1080/23328940.2015.1047558
  • Greenfield NJ. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat Protoc. 2007;1(6):2527–2535.
  • Voets T. TRP channels and thermosensation. In Bernd Nilius, Veit Flockerzi: Handbook of experimental pharmacology 223. Vol. 223; 2014. p. 729–741.Cham Switzerland: Springer.
  • Vriens J, Nilius B, Voets T. Peripheral thermosensation in mammals. Nat Rev Neurosci. 2014;15(9):573–589.
  • Diaz-Franulic I, Poblete H, Miño-Galaz G, et al. Allosterism and structure in thermally activated transient receptor potential channels. Annu Rev Biophys. 2016;45(1):371–398.
  • Premkumar LS, Ahern GP. Induction of vanilloid receptor channel activity by protein kinase C. Nature. 2000;408(6815):985–990.
  • Matta JA, Ahern GP. Voltage is a partial activator of rat thermosensitive TRP channels. J Physiol. 2007;585(2):469–482.
  • Benítez-Angeles M, Morales-Lázaro SL, Juárez-González E, et al. TRPV1: structure, endogenous agonists, and mechanisms. Int J Mol Sci. 2020;21(10):1–18.
  • Tominaga M, Wada M, Masu M. Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc Natl Acad Sci U S A. 2001;98(12):6951–6956.
  • Jara-Oseguera A, Islas LD. The role of allosteric coupling on thermal activation of thermo-TRP channels. Biophys J. 2013;104(10):2160–2169.
  • Tominaga M, Caterina MJ, Malmberg AB, et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron. 1998;21(3):531–543.
  • Trevisani M, Smart D, Gunthorpe MJ, et al. Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1. Nat Neurosci. 2002;5(6):546–551.
  • Ma L, Lee BH, Mao R, et al. Nicotinic acid activates the capsaicin receptor TRPV1. Arterioscler Thromb Vasc Biol. 2014;34(6):1272–1280.
  • Senning EN, Collins MD, Stratiievska A, et al. Regulation of TRPV1 ion channel by phosphoinositide (4,5)-bisphosphate. J Biol Chem. 2014;289(16):10999–11006.
  • Cao X, Ma L, Yang F, et al. Divalent cations potentiate TRPV1 channel by lowering the heat activation threshold. J Gen Physiol. 2014;143(1):75–90.
  • Cesare P, Dekker LV, Sardini A, et al. Specific involvement of PKC-ε in sensitization of the neuronal response to painful heat. Neuron. 1999;23(3):617–624.
  • Sosa-Pagán JO, Iversen ES, Grandl J. TRPV1 temperature activation is specifically sensitive to strong decreases in amino acid hydrophobicity. Sci Rep. 2017;7(1):1–10.
  • Susankova K, Ettrich R, Vyklicky L, et al. Contribution of the putative inner-pore region to the gating of the transient receptor potential vanilloid subtype 1 channel (TRPV1). J Neurosci. 2007;27(28):7578–7585.
  • Gregorio-Teruel L, Valente P, González-Ros JM, et al. Mutation of I696 and W697 in the TRP box of vanilloid receptor subtype I modulates allosteric channel activation. J Gen Physiol. 2014;143(3):361–375.
  • Hilton JK, Rath P, Helsell CVM, et al. Understanding thermosensitive transient receptor potential channels as versatile polymodal cellular sensors. Biochemistry. 2015;54(15):2401–2413.
  • Yang F, Zheng J. Understand spiciness: mechanism of TRPV1 channel activation by capsaicin. Protein Cell. 2017;8(3):169–177.
  • Elokely K, Velisetty P, Delemotte L, et al. Understanding TRPV1 activation by ligands: insights from the binding modes of capsaicin and resiniferatoxin. Proc Natl Acad Sci U S A. 2016;113(2):E137–E145.
  • Gavva NR, Klionsky L, Qu Y, et al. Molecular determinants of vanilloid sensitivity in TRPV1. J Biol Chem. 2004;279(19):20283–20295.
  • Lee JH, Lee Y, Ryu H, et al. Structural insights into transient receptor potential vanilloid type 1 (TRPV1) from homology modeling, flexible docking, and mutational studies. J Comput Aided Mol Des. 2011;25(4):317–327.
  • Feng Z, Pearce LV, Xu X, et al. Structural insight into tetrameric hTRPV1 from homology modeling, molecular docking, molecular dynamics simulation, virtual screening, and bioassay validations. J Chem Inf Model. 2015;55(3):572–588.
  • Chu Y, Cohen BE, Chuang H. A single TRPV1 amino acid controls species sensitivity to capsaicin. Sci Rep. 2020;10(1):1–12.
  • Chou MZ, Mtui T, Gao YD, et al. Resiniferatoxin binds to the capsaicin receptor (TRPV1) near the extracellular side of the S4 transmembrane domain. Biochemistry. 2004;43(9):2501–2511.
  • Gau P, Poon J, Ufret-Vincenty C, et al. The zebrafish ortholog of TRPV1 is required for heat-induced locomotion. J Neurosci. 2013;33(12):5249–5260.
  • Boukalova S, Marsakova L, Teisinger J, et al. Conserved residues within the putative S4-S5 region serve distinct functions among thermosensitive vanilloid transient receptor potential (TRPV) channels. J Biol Chem. 2010;285(53):41455–41462.
  • Singh AK, McGoldrick LL, Sobolevsky AI. Structure and gating mechanism of the transient receptor potential channel TRPV3. Nat Struct Mol Biol. 2018;25(9):805–813.
  • Singh AK, McGoldrick LL, Demirkhanyan L, et al. Structural basis of temperature sensation by the TRP channel TRPV3. Nat Struct Mol Biol. 2019;26(11):994–998.
  • Laursen WJ, Schneider ER, Merriman DK, et al. Low-cost functional plasticity of TRPV1 supports heat tolerance in squirrels and camels. Proc Natl Acad Sci U S A. 2016;113(40):11342–11347.
  • Jordt SE, Tominaga M, Julius D. Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc Natl Acad Sci U S A. 2000;97(14):8134–8139.
  • Bevan S, Geppetti P. Protons: small stimulants of capsaicin-sensitive sensory nerves. Trends Neurosci. 1994;17(12):509–512.
  • Ryu S, Liu B, Yao J, et al. Uncoupling proton activation of vanilloid receptor TRPV1. J Neurosci. 2007;27(47):12797–12807.
  • Huang J, Zhang X, McNaughton P. Inflammatory pain: the cellular basis of heat hyperalgesia. Curr Neuropharmacol. 2006;4(3):197–206.
  • Liu L, Simon SA. A rapid capsaicin-activated current in rat trigeminal ganglion neurons. Proc Natl Acad Sci U S A. 1994;91(2):738–741.
  • Welch JM, Simon SA, Reinhart PH. The activation mechanism of rat vanilloid receptor 1 by capsaicin involves the pore domain and differs from the activation by either acid or heat. Proc Natl Acad Sci U S A. 2000;97(25):13889–13894.
  • Ryu S, Liu B, Qin F. Low pH potentiates both capsaicin binding and channel gating of VR1 receptors. J Gen Physiol. 2003;122(1):45–61.
  • Baumann TK, Martenson ME. Extracellular protons both increase the activity and reduce the conductance of capsaicin-gated channels. J Neurosci. 2000;20(11):RC80–RC80.
  • Boukalova S, Teisinger J, Vlachova V. Protons stabilize the closed conformation of gain-of-function mutants of the TRPV1 channel. Biochim Biophys Acta - Mol Cell Res. 2013;1833(3):520–528.
  • Yao J, Liu B, Qin F. Pore turret of thermal TRP channels is not essential for temperature sensing. Proc Natl Acad Sci U S A. 2010;107(32):65994.
  • Yang F, Cui Y, Wang K, et al. Thermosensitive TRP channel pore turret is part of the temperature activation pathway. Proc Natl Acad Sci. 2010;107(15):7083–7088.
  • Cui Y, Yang F, Cao X, et al. Selective disruption of high sensitivity heat activation but not capsaicin activation of TRPV1 channels by pore turret mutations. J Gen Physiol. 2012;139(4):273–283.
  • Du G, Tian Y, Yao Z, et al. A specialized pore turret in the mammalian cation channel TRPV1 is responsible for distinct and species-specific heat activation thresholds. J Biol Chem. 2020;295(28):9641–9649.
  • Voets T, Droogmans G, Wissenbach U, et al. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature. 2004;430(7001):748–754.
  • Yang F, Xu L, Lee BH, et al. An unorthodox mechanism underlying voltage sensitivity of TRPV1 ion channel. Adv Sci. 2020;2000575:1–10.
  • Nilius B, Talavera K, Owsianik G, et al. Gating of TRP channels: a voltage connection? J Physiol. 2005;567(1):35–44.
  • Yao J, Liu B, Qin F. Modular thermal sensors in temperature-gated transient receptor potential (TRP) channels. Proc Natl Acad Sci U S A. 2011;108(27):11109–11114.
  • Ladrón-de-Guevara E, Dominguez L, Rangel-Yescas GE, et al. The contribution of the ankyrin repeat domain of TRPV1 as a thermal module. Biophys J. 2020;118(4):836–845.
  • Vlachová V, Teisinger J, Sušánková K, et al. Functional role of C-terminal cytoplasmic tail of rat vanilloid receptor 1. J Neurosci. 2003;23(4):1340–1350.
  • Brauchi S, Orta G, Mascayano C, et al. Dissection of the components for PIP2 activation and thermosensation in TRP channels. Proc Natl Acad Sci U S A. 2007;104(24):10246–10251.
  • Brauchi S, Orta G, Salazar M, et al. A hot-sensing cold receptor: c-terminal domain determines thermosensation in transient receptor potential channels. J Neurosci. 2006;26(18):4835–4840.
  • Joseph J, Wang S, Lee J, et al. Carboxyl-terminal domain of transient receptor potential vanilloid 1 contains distinct segments differentially involved in capsaicin- and heat-induced desensitization. J Biol Chem. 2013;288(50):35690–35702.
  • Glaser F, Pupko T, Paz I, et al. ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics. 2003;19(1):163–164.
  • Fricke TC, Echtermeyer F, Zielke J, et al. Oxidation of methionine residues activates the high-threshold heat-sensitive ion channel TRPV2. Proc Natl Acad Sci U S A. 2019;116(48):24359–24365.
  • Liu B, Ma W, Ryu S, et al. Inhibitory modulation of distal C-terminal on protein kinase C-dependent phospho-regulation of rat TRPV1 receptors. J Physiol. 2004;560(3):627–638.
  • Neeper MP, Liu Y, Hutchinson TL, et al. Activation properties of heterologously expressed mammalian TRPV2: evidence for species dependence. J Biol Chem. 2007;282(21):15894–15902.
  • Sánchez-Moreno A, Guevara-Hernández E, Contreras-Cervera R, et al. Irreversible temperature gating in TRPV1 sheds light on channel activation. Elife. 2018;7:1–11.
  • Zaelzer C, Hua P, Prager-Khoutorsky M, et al. ΔN-TRPV1: a molecular co-detector of body temperature and osmotic stress. Cell Rep. 2015;13(1):23–30.
  • Cordero-Morales JF, Gracheva EO, Julius D. Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli. Proc Natl Acad Sci U S A. 2011;108(46):E1184–E1191.
  • Jabba S, Goyal R, Sosa-Pagán JO, et al. Directionality of temperature activation in mouse TRPA1 ion channel can be inverted by single-point mutations in ankyrin repeat six. Neuron. 2014;82(5):1017–1031.
  • Moparthi L, Survery S, Kreir M, et al. Human TRPA1 is intrinsically cold- and chemosensitive with and without its N-terminal ankyrin repeat domain. Proc Natl Acad Sci. 2014;111(47):16901–16906.
  • Survery S, Moparthi L, Kjellbom P, et al. The N-terminal ankyrin repeat domain is not required for electrophile and heat activation of the purified mosquito TRPA1 receptor. J Biol Chem. 2016;291(52):26899–26912.
  • Velisetty P, Stein RA, Sierra-Valdez FJ, et al. Expression and purification of the pain receptor TRPV1 for spectroscopic analysis. Sci Rep. 2017;7(1):1–12.
  • Jara-Oseguera A, Bae C, Swartz KJ. An external sodium ion binding site controls allosteric gating in TRPV1 channels. Elife. 2016;5:1–33.
  • Yang F, Cui Y, Wang K, et al. Reply to Yao et al.: is the pore turret just thermoTRP channels’ appendix? Proc Natl Acad Sci U S A. 2010;107(32):E126–E127.
  • Bohlen CJ, Priel A, Zhou S, et al. A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell. 2010;141(5):834–845.
  • Yang S, Yang F, Wei N, et al. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1. Nat Commun. 2015;6. DOI:10.1038/ncomms9297.
  • Geron M, Kumar R, Matzner H, et al. Protein toxins of the Echis coloratus viper venom directly activate TRPV1. Biochim Biophys Acta - Gen Subj. 2017;1861(3):615–623.
  • Hakim M, Jiang W, Luo L, et al. Scorpion toxin, BmP01, induces pain by targeting TRPV1 channel. Toxins (Basel). 2015;7(9):3671–3687.
  • Geron M, Kumar R, Zhou W, et al. TRPV1 pore turret dictates distinct DkTx and capsaicin gating. Proc Natl Acad Sci U S A. 2018;115(50):E11837–E11846.
  • Yang F, Zheng J. High temperature sensitivity is intrinsic to voltage-gated potassium channels. Elife. 2014;3:e03255.
  • Nobile M, Olcese R, Toro L, et al. Fast inactivation of Shaker K+ channels is highly temperature dependent. Exp Brain Res. 1997;114(1):138–142.
  • Chowdhury S, Jarecki BW, Chanda B. A molecular framework for temperature-dependent gating of ion channels. Cell. 2014;158(5):1148–1158.
  • Chen H, Deng J, Cui Q, et al. Mapping temperature-dependent conformational change in the voltage-sensing domain of an engineered heat-activated K+ channel. Proc Natl Acad Sci U S A. 2021;118(14). DOI:10.1073/pnas.2017280118
  • Bagriantsev SN, Gracheva EO. Molecular mechanisms of temperature adaptation. J Physiol. 2015;593(16):3483–3491.
  • Gracheva EO, Bagriantsev SN. Evolutionary adaptation to thermosensation. Curr Opin Neurobiol. 2015;34:67–73.
  • Saito S, Tominaga M. Evolutionary tuning of TRPA1 and TRPV1 thermal and chemical sensitivity in vertebrates. Temperature. 2017;4(2):141–152. DOI: 10.1080/23328940.2017.1315478
  • Saito S, Ohkita M, Saito CT, et al. Evolution of heat sensors drove shifts in thermosensation between Xenopus species adapted to different thermal niches. J Biol Chem. 2016;291(21):11446–11459.
  • Bino G, Kingsford RT, Archer M, et al. The platypus: evolutionary history, biology, and an uncertain future. J Mammal. 2019;100(2):308–327.
  • Luo L, Wang Y, Li B, et al. Molecular basis for heat desensitization of TRPV1 ion channels. Nat Commun. 2019;10(1):1–12.
  • Wang Y, Liu J, Huang BO, et al. Mechanism of alternative splicing and its regulation. Biomed Rep. 2015;3(2):152–158.
  • Lee Y, Rio DC. Mechanisms and regulation of alternative pre-mRNA splicing. Annu Rev Biochem. 2015;84(1):291–323.
  • Park E, Pan Z, Zhang Z, et al. The expanding landscape of alternative splicing variation in human populations. Am J Hum Genet. 2018;102(1):11–26.
  • Pan Q, Shai O, Lee LJ, et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413–1415.
  • Wang ET, Sandberg R, Luo S, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456(7221):470–476.
  • Suzuki M, Sato J, Kutsuwada K, et al. Cloning of a stretch-inhibitable nonselective cation channel. J Biol Chem. 1999;274(10):6330–6335.
  • Tian W, Fu Y, Wang DH, et al. Regulation of TRPV1 by a novel renally expressed rat TRPV1 splice variant. Am J Physiol - Ren Physiol. 2006;290(1):117–126.
  • Gracheva EO, Cordero-Morales JF, González-Carcacía JA, et al. Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats. Nature. 2011;476(7358):88–92.
  • Lyall V, Heck GL, Vinnikova AK, et al. The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. J Physiol. 2004;558(1):147–159.
  • Xue Q, Yu Y, Trilk SL, et al. The genomic organization of the gene encoding the vanilloid receptor: evidence for multiple splice variants. Genomics. 2001;76(1–3):14–20.
  • Schumacher MA, Moff I, Sudanagunta SP, et al. Molecular cloning of an N-terminal splice variant of the capsaicin receptor. J Biol Chem. 2000;275(4):2756–2762.
  • Naeini RS, Witty MF, Séguéla P, et al. An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nat Neurosci. 2006;9(1):93–98.
  • Sudbury JR, Ciura S, Sharif-Naeini R, et al. Osmotic and thermal control of magnocellular neurosecretory neurons - role of an N-terminal variant of trpv1. Eur J Neurosci. 2010;32(12):2022–2030.
  • Eilers H, Lee SY, Hau CW, et al. The rat vanilloid receptor splice variant VR.5'sv blocks TRPV1 activation. Neuroreport. 2007;18(10):969–973.
  • Vos MH, Neelands TR, McDonald HA, et al. TRPV1b overexpression negatively regulates TRPV1 responsiveness to capsaicin, heat and low pH in HEK293 cells. J Neurochem. 2006;99(4):1088–1102.
  • Lu G, Henderson D, Liu L, et al. TRPV1b, a functional human vanilloid receptor splice variant. Mol Pharmacol. 2005;67(4):1119–1127.
  • Wang C, Hu HZ, Colton CK, et al. An alternative splicing product of the murine trpv1 gene dominant negatively modulates the activity of TRPV1 channels. J Biol Chem. 2004;279(36):37423–37430.
  • Lyall V, Heck GL, Phan THT, et al. Ethanol modulates the VR-1 variant amiloride-insensitive salt taste receptor. I. Effect on TRC volume and Na+ flux. J Gen Physiol. 2005;125(6):569–585.
  • Lyall V, Heck GL, Phan THT, et al. Ethanol modulates the VR-1 variant amiloride-insensitive salt taste receptor. II. Effect on chorda tympani salt responses. J Gen Physiol. 2005;125(6):587–600.
  • Katsumata T, Nakakuki H, Tokunaga C, et al. Effect of Maillard reacted peptides on human salt taste and the amiloride-insensitive salt taste receptor (TRPV1t). Chem Senses. 2008;33(7):665–680.
  • Wissenbach U, Bödding M, Freichel M, et al. Trp12, a novel Trp related protein from kidney. FEBS Lett. 2000;485(2–3):127–134.
  • Jung J, Lee SY, Hwang SW, et al. Agonist recognition sites in the cytosolic tails of vanilloid receptor 1. J Biol Chem. 2002;277(46):44448–44454.
  • Johnson AK. Osmoregulation. In Larry R. Squire: Encyclopedia of Neuroscience. 2009. p. 309–316. Academic Press, Cambridge Massachusetts: Elsevier. DOI:10.1016/B978-008045046-9.00463-0.
  • Verbalis JG. How does the brain sense osmolality? J Am Soc Nephrol. 2007;18(12):3056–3059.
  • Ruiz C, Gutknecht S, Delay E, et al. Detection of NaCl and KCl in TRPV1 knockout mice. Chem Senses. 2006;31(9):813–820.
  • Treesukosol Y, Lyall V, Heck GL, et al. A psychophysical and electrophysiological analysis of salt taste in Trpv1 null mice. Am J Physiol - Regul Integr Comp Physiol. 2007;292(5):1799–1809.
  • Smith KR, Treesukosol Y, Brennan Paedae A, et al. Contribution of the TRPV1 channel to salt taste quality in mice as assessed by conditioned taste aversion generalization and chorda tympani nerve responses. Am J Physiol - Regul Integr Comp Physiol. 2012;303(11):1195–1205.
  • Breza JM, Contreras RJ. Anion size modulates salt taste in rats. J Neurophysiol. 2012;107(6):1632–1648.
  • Liu L, Simon SA. Acidic stimuli activates two distinct pathways in taste receptor cells from rat fungiform papillae. Brain Res. 2001;923(1–2):58–70.
  • Sun H, Zheng Z, Fedorenko OA, et al. Covalent linkage of bacterial voltage-gated sodium channels. BMC Biophys. 2019;12(1):1.
  • Sachyani D, Dvir M, Strulovich R, et al. Structural basis of a Kv7.1 potassium channel gating module: studies of the intracellular C-terminal domain in complex with calmodulin. Structure. 2014;22(11):1582–1594.
  • Bracamontes JR, Steinbach JH. Steroid interaction with a single potentiating site is sufficient to modulate GABA-A receptor function. Mol Pharmacol. 2009;75(4):973–981.
  • Steinbach JH, Akk G. Use of concatemers of ligand-gated ion channel subunits to study mechanisms of steroid potentiation. Anesthesiology. 2011;115(6):1.
  • Last NB, Kolmakova-Partensky L, Shane T, et al. Mechanistic signs of double-barreled structure in a fluoride ion channel. Elife. 2016;5(e18767):1–10.
  • Hazan A, Kumar R, Matzner H, et al. The pain receptor TRPV1 displays agonist-dependent activation stoichiometry. Sci Rep. 2015;5(1):12278.
  • Winter Z, Buhala A, Ötvös F, et al. Functionally important amino acid residues in the transient receptor potential vanilloid 1 (TRPV1) ion channel - an overview of the current mutational data. Mol Pain. 2013;9(1):1–29.
  • Ahern GP, Brooks IM, Miyares RL, et al. Extracellular cations sensitize and gate capsaicin receptor TRPV1 modulating pain signaling. J Neurosci. 2005;25(21):5109–5116.
  • Janssens A, Voets T. Ligand stoichiometry of the cold- and menthol-activated channel TRPM8. J Physiol. 2011;589(20):4827–4835.
  • Monod J, Wyman J, Changeux JP. On the nature of allosteric transitions: a plausible model. J Mol Biol. 1965;12(1):88–118.
  • Changeux J-P. Allostery and the Monod-Wyman-changeux model after 50 years. Annu Rev Biophys. 2012;41(1):103–133.
  • Ye W, Tu Y-H, Cooper AJ, et al. Activation stoichiometry and pore architecture of TRPA1 probed with channel concatemers. Sci Rep. 2018;8(1):17104.
  • Castillo DJ, Katz B. Interaction at end-plate receptors between different choline derivatives. Proc R Soc London Ser B - Biol Sci. 1957;146(924):369–381.
  • Colquhoun D. Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. BrJ Pharmacol. 1998;125(5):923–947.
  • Weiss JN. The Hill equation revisited: uses and misuses. FASEB J. 1997;11:835–841.
  • Hill AV. The combinations of haemoglobin with oxygen and with carbon monoxide. I. Biochem J. 1913;7(5):471–480.
  • Hunter CA, Anderson HL. What is Cooperativity? Angew Chem Int Educ. 2009;48(41):7488–7499.
  • Minard A, Bauer C, Wright D, et al. Remarkable progress with small-molecule modulation of TRPC1/4/5 channels: implications for understanding the channels in health and disease. Cells. 2018;7(6):52.
  • Hoenderop JGJ, Voets T, Hoefs S, et al. Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J. 2003;22(4):776–785.
  • Cheng W, Yang F, Liu S, et al. Heteromeric heat-sensitive transient receptor potential channels exhibit distinct temperature and chemical response. J Biol Chem. 2012;287(10):7279–7288.
  • Fischer MJM, Balasuriya D, Jeggle P, et al. Direct evidence for functional TRPV1/TRPA1 heteromers. Pflügers Arch - Eur J Physiol. 2014;466(12):2229–2241.
  • Chung MK, Güler AD, Caterina MJ. Biphasic currents evoked by chemical or thermal activation of the heat-gated ion channel, TRPV3. J Biol Chem. 2005;280(16):15928–15941.
  • Liu B, Yao J, Zhu MX, et al. Hysteresis of gating underlines sensitization of TRPV3 channels. J Gen Physiol. 2011;138(5):509–520.
  • Smith GD, Gunthorpe MJ, Kelsell RE, et al. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature. 2002;418(6894):186–190.
  • Cheng W, Yang F, Takanishi CL, et al. Thermosensitive TRPV channel subunits coassemble into heteromeric channels with intermediate conductance and gating properties. J Gen Physiol. 2007;129(3):191–207.
  • Kobayashi K, Fukuoka T, Obata K, et al. Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with Aδ/C-fibers and colocalization with Trk receptors. J Comp Neurol. 2005;493(4):596–606.
  • Masuoka T, Kudo M, Yamashita Y, et al. TRPA1 channels modify TRPV1-mediated current responses in dorsal root ganglion neurons. Front. Physiol. 2017;8:1–9.
  • Iida T, Moriyama T, Kobata K, et al. TRPV1 activation and induction of nociceptive response by a non-pungent capsaicin-like compound, capsiate. Neuropharmacology. 2003;44(7):958–967.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.