3,893
Views
13
CrossRef citations to date
0
Altmetric
Research Paper

Indicators to assess physiological heat strain – Part 3: Multi-country field evaluation and consensus recommendations

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 274-291 | Received 11 Sep 2021, Accepted 16 Feb 2022, Published online: 01 Apr 2022

References

  • Flouris AD, Dinas PC, and Ioannou LG, et al. Workers’ health and productivity under occupational heat strain: a systematic review and meta-analysis. Lancet Planet Health. 2018;2(12):e521–e531. doi:10.1016/s2542-5196(18)30237-7.
  • Casanueva A, Burgstall A, and Kotlarski S, et al. Overview of existing heat-health warning systems in Europe. Int J Environ Res Public Health. 2019;16(15):2657. doi:10.3390/ijerph16152657.
  • Morabito M, Messeri A, and Noti P, et al. An occupational heat-health warning system for Europe: the HEAT-SHIELD platform. Int J Environ Res Public Health. 2019;16(16):2890. doi:10.3390/ijerph16152657.
  • Morris NB, Piil JF, and Morabito M, et al. The HEAT-SHIELD project - Perspectives from an inter-sectoral approach to occupational heat stress. J Sci Med Sport. 2021; 24(8):747–755. doi:10.1016/j.jsams.2021.03.001.
  • Ioannou LG, Foster J, and Morris NB, et al. Occupational heat strain in outdoor workers: A comprehensive review and meta-analysis. Temperature. 2022 (in press). doi:10.1080/23328940.2022.2030634.
  • Ioannou LG, Mantzios K, and Tsoutsoubi L, et al. Indicators to assess physiological heat strain – Part 1: Systematic review. Temperature. 2022 (in press). doi:10.1080/23328940.2022.2037376.
  • Ioannou LG, Dinas PC, Notley SR, et al. Indicators to assess physiological heat strain – Part 2: Delphi exercise. Temperature. 2022 (in press). doi:10.1080/23328940.2022.2044738.
  • Ioannou LG, Tsoutsoubi L, and Mantzios K, et al. A free software to predict heat strain according to the ISO 7933: 2018. Ind Health. 2019;57(6):711–720. doi:10.2486/indhealth.2018-0216.
  • Ioannou LG, Tsoutsoubi L, and Samoutis G, et al. Time-motion analysis as a novel approach for evaluating the impact of environmental heat exposure on labor loss in agriculture workers. Temperature. 2017;4(3):330–340. doi:10.2486/indhealth.2018-0216.
  • Miller VS, and Bates GP. The thermal work limit is a simple reliable heat index for the protection of workers in thermally stressful environments. Ann Occup Hyg. 2007;51(6):553–561. doi:10.2486/indhealth.2018-0216.
  • Vatani J, Golbabaei F, and Dehghan SF, et al. Applicability of Universal Thermal Climate Index (UTCI) in occupational heat stress assessment: a case study in brick industries. Ind Health. 2016;54(1):14–19. doi:10.2486/indhealth.2015-0069.
  • Nassiri P, Monazzam MR, and Golbabaei F, et al. Application of Universal Thermal Climate Index (UTCI) for assessment of occupational heat stress in open-pit mines. Ind Health. 2017;55(5):437–443. doi:10.2486/indhealth.2015-0069.
  • Hajizadeh R, Golbabaei F, and Farhang Dehghan S, et al. Validating the heat stress indices for using in heavy work activities in hot and dry climates. J Res Health Sci. 2016;16(2):90–95. Spring.
  • Ioannou LG, Mantzios K, and Tsoutsoubi L, et al. Effect of a simulated heat wave on physiological strain and labour productivity. Int J Environ Res Public Health. 2021;18(6):3011. doi:10.2486/indhealth.2015-0069.
  • Ioannou LG, Mantzios K, and Tsoutsoubi L, et al. Occupational heat stress: multi-country observations and interventions. Int J Environ Res Public Health. 2021;18(12):6303. doi:10.3390/ijerph18126303.
  • Meade RD, D’Souza AW, and Krishen L, et al. The physiological strain incurred during electrical utilities work over consecutive work shifts in hot environments: a case report. J Occup Environ Hyg. Dec 2017;14(12):986–994. doi:10.1080/15459624.2017.1365151.
  • Ioannou LG, Tsoutsoubi L, and Mantzios K, et al. The impacts of sun exposure on worker physiology and cognition: multi-country evidence and interventions. Int J Environ Res Public Health. 2021;18(14):7698. doi:10.3390/ijerph18147698.
  • Meade RD, Lauzon M, and Poirier MP, et al. An evaluation of the physiological strain experienced by electrical utility workers in North America. J Occup Environ Hyg. 2015;12(10):708–720. doi:10.1080/15459624.2015.1043054.
  • Meade RD, Lauzon M, and Poirier MP, et al. The physical demands of electrical utilities work in North America. J Occup Environ Hyg. 2016;13(1):60–70. doi:10.1080/15459624.2015.1077966.
  • Foster J, Smallcombe JW, and Hodder S, et al. An advanced empirical model for quantifying the impact of heat and climate change on human physical work capacity. Int J Biometeorol. 2021;65(7):1215–1229. doi:10.1007/s00484-021-02105-0.
  • Foster J, Smallcombe JW, and Hodder SG, et al. Aerobic fitness as a parameter of importance for labour loss in the heat. J Sci Med Sport. 2021;24(8):824–830. doi:10.1016/j.jsams.2021.05.002.
  • Sweigert RI, and Schabacker WH. The delphi technique: how well does it work in setting educational goals?. Atlanta, Georgia, USA: US Department of Health Education & Welfare National Institute of Education. TM 003627; ED 09415. 19. 1974.
  • Flouris AD, Ioannou LG, and Dinas PC, et al. Assessment of occupational heat strain and mitigation strategies in Qatar. International Labour Organization, Doha, Qatar. 2019.
  • Morris NB, Levi M, and Morabito M, et al. Health vs. wealth: Employer, employee and policy-maker perspectives on occupational heat stress across multiple European industries. Temperature. 2020;1–18. doi:10.1080/23328940.2020.1852049.
  • Casanueva A, Kotlarski S, and Fischer AM, et al. Escalating environmental summer heat exposure—a future threat for the European workforce. Reg Environ Change. 2020;20(2):40. doi:10.1007/s10113-020-01625-6.
  • Kenny GP, Wilson TE, and Flouris AD, et al. Heat exhaustion. Handb Clin Neurol. 2018;157:505–529. doi:10.1016/b978-0-444-64074-1.00031-8.
  • Epstein Y, Yanovich R, and Longo DL. Heatstroke. N Engl J Med. Jun 20 2019;380(25):2449–2459. doi:10.1056/NEJMra1810762.
  • Flouris AD, Babar Z, and Ioannou LG, et al. Improving the evidence on health inequities in migrant construction workers preparing for big sporting events. BMJ. 2021;374:n1615. doi:10.1136/bmj.n1615.
  • Orlov A, Sillmann J, and Aunan K, et al. Economic costs of heat-induced reductions in worker productivity due to global warming. Glob Environ Change. 2020;63:102087. doi:10.1016/j.gloenvcha.2020.102087.
  • Maloney SK, and Forbes CF. What effect will a few degrees of climate change have on human heat balance? Implications for human activity. Int J Biometeorol. 2011;55(2):147–160. doi:10.1007/s00484-010-0320-6.
  • Morabito M, Pavlinic DZ, and Crisci A, et al. Determining optimal clothing ensembles based on weather forecasts, with particular reference to outdoor winter military activities. Int J Biometeorol. 2011;55(4):481–490. doi:10.1007/s00484-010-0357-6.
  • Notley SR, Meade RD, and Kenny GP. Time following ingestion does not influence the validity of telemetry pill measurements of core temperature during exercise-heat stress: The Journal Temperature toolbox. Temperature. 2021;8(1):12–20. doi:10.1080/23328940.2020.1801119.
  • Ramanathan NL. A new weighting system for mean surface temperature of the human body. J Appl Physiol. 1964;19(3):531–533.
  • Burton AC. Human calorimetry: II. The average temperature of the tissues of the body: three figures. J Nutr. 1935;9(3):261–280.
  • Armstrong LE, Maresh CM, Castellani JW, et al. Urinary indices of hydration status. Int J Sport Nutr Exerc Metab. 1994;4(3):265–279.
  • Misailidi M, Mantzios K, and Papakonstantinou C, et al. Environmental and psychophysical heat stress in adolescent tennis athletes. Int J Sports Physiol Perform. 2021; 1–6. doi:10.1123/ijspp.2020-0820.
  • Swinscow TDV Correlation and regression. Statistics at Square One Ninth Edition, revised by M J Campbell. BMJ Publ. Group; 1997.
  • World Health Organization. Health factors involved in working under conditions of heat stress: report of a WHO scientific group. HM Stationery Office; 1969.
  • International Organisation for Standardardization. ISO 7933: ergonomics of the thermal environment - Analytical determination and interpretation of heat stress using calculation of the predicted heat strain. Geneva, Switzerland: International Organisation for Standardardization; 2004.
  • International Organization for Standardization. ISO 7726: ergonomics of the thermal environment - Instruments for measuring physical quantities. 2 ed. Geneva, Switzerland: International Organization for Standardization; 1998.
  • OECD.Stat. PPPs and exchange rates. Available from Apr 1st, 2019. https://stats.oecd.org/Index.aspx?DataSetCode=SNA_TABLE4
  • Internatioanl Labour Organization. Global wage report 2018/19: what lies behind gender pay gaps. International Labour Organization; 2018.
  • International Labour Organization. Wages, productivity and labour share in China. Bangkok, Thailand: ILO Regional Office for Asia and the Pacific: Regional Economic and Social Analysis Unit (RESA). 2016.
  • Torrance GW, Feeny D. Utilities and quality-adjusted life years. Int J Technol Assess Health Care. 1989;5(4):559–575.
  • World Bank. The cost of air pollution: strengthening the economic case for action. 2016. http://documents.worldbank.org/curated/en/781521473177013155/The-cost-of-air-pollution-strengthening-the-economic-case-for-action
  • Rintamäki H, and Rissanen S. Heat strain in cold. Ind Health. 2006;44(3):427–432. doi:10.2486/indhealth.44.427.
  • ACGIH. TLVs and BEIs, threshold limit values for chemical substances and physical agents and biological exposure indices. Cincinnati: Signature Publications; 2012.
  • International Organization for Standardization. ISO 7243: hot environments-estimation of the heat stress on working man, based on the WBGT index (wet bulb globe temperature). Geneva, Switzerland: International Organization for Standardization; 1989.
  • Błażejczyk K, Bröde P, Fiala D, et al. UTCI–new index for assessment of heat stress in man. Przegląd Geograficzny. 2010;82(1):49
  • Smallcombe JW, Foster J, and Hodder S, et al. Impact of fan use on physical work capacity in extreme heat: 99 may 29 10:45 AM - 11:00 AM. Med Sci Sports Exercise. 2019;51(6S):15. doi:10.1249/01.mss.0000560531.57940.a8.
  • Yaglou CP, and Minard D. Prevention of heat casualties at marine corps training centers, Ohio, USA. 1956.
  • Ministry of Labor Welfare and Social Insurance: Department of Labor Inspection. Occupational heat strain. Vol. 4789:291. Cyprus: Official Gazette of the Republic of Cyprus; 2014.
  • Qatar Ministry of Administrative Development Labour and Social Affairs. Specifying measures to protect workers from heat stress: no. (17) for the year 2021. Qatar Ministry of Administrative Development Labour and Social Affairs; 2020.
  • Jendritzky G, de Dear R, Havenith G. UTCI—why another thermal index? Int J Biometeorol. 2012;56(3):421–428.
  • Anderson BG, and Bell ML. Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States. Epidemiology. 2009;20(2):205–213. doi:10.1097/EDE.0b013e318190ee08.
  • Kjellstrom T, Lemke B, and Otto M, et al. Occupational heat stress: contribution to WHO project on “Global assessment of the health impacts of climate change”, which started in 2009. Mapua: Health and Environment International Trust. 2014.
  • Zander KK, Botzen WJW, and Oppermann E, et al. Heat stress causes substantial labour productivity loss in Australia. Nat Clim Chang. 2015;5(7):647–651. doi:10.1038/nclimate2623.
  • Gunnell D, Platt S, and Hawton K. The economic crisis and suicide. BMJ. 2009;338(may15 1):b1891. doi:10.1136/bmj.b1891.
  • International Labour Organization. Working on a warmer planet: the impact of heat stress on labour productivity and decent work. Geneva: Publications Production Unit, International Labour Organization; 2019.
  • Notley SR, Flouris AD, and Kenny GP. On the use of wearable physiological monitors to assess heat strain during occupational heat stress. Appl Physiol Nutr Metab. 2018;43(9):869–881. doi:10.1139/apnm-2018-0173.
  • Flouris AD, McGinn R, and Poirier MP, et al. Screening criteria for increased susceptibility to heat stress during work or leisure in hot environments in healthy individuals aged 31–70 years. Temperature. 2018;5(1):86–99. doi:10.1080/23328940.2017.1381800.
  • Ioannou LG, Gkikas G, Mantzios K, et al. Chapter 32 - Risk assessment for heat stress during work and leisure. In: Tsatsakis AM, editor. Toxicological risk assessment and multi-system health impacts from exposure. Amsterdam, The Netherlands: Academic Press; 2021. p. 373–385. doi: 10.1016/B978-0-323-85215-9.00004-0
  • Morris NB, Jay O, and Flouris AD, et al. Sustainable solutions to mitigate occupational heat strain - an umbrella review of physiological effects and global health perspectives. Environ Health. 2020;19(1):95. doi:10.1186/s12940-020-00641-7.
  • Moore PV OSH and the future of work. Benefits and risks of artificial intelligence tools in workplaces. European Agency for Safety and Health at Work; 2019. Available from 2020 Oct 24.https://osha.europa.eu/sites/default/files/publications/documents/OSH_future_of_work_artificial_intelligence_0.pdf