861
Views
0
CrossRef citations to date
0
Altmetric
Comprehensive Review

Indoor overheating: A review of vulnerabilities, causes, and strategies to prevent adverse human health outcomes during extreme heat events

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 16 Jan 2024, Accepted 20 May 2024, Published online: 19 Jul 2024

References

  • Mora C, Dousset B, Caldwell IR, et al. Global risk of deadly heat. Nat Clim Chang. 2017;7:501–506. doi: 10.1038/NCLIMATE3322
  • Tuholske C, Caylor K, Funk C, et al. Global urban population exposure to extreme heat. Proc Natl Acad Sci USA. 2021;118(41). doi: 10.1073/pnas.2024792118
  • Ebi KL, Capon A, Berry P, Broderick C, de Dear R, Havenith G, Honda Y, Kovats S, Ma W, Malik A, Morris NB, Nybo L, Seneviratne SI, Vano J, Jay O. Hot weather and heat extremes: health risks. The Lancet 2021;398:698–708. doi: 10.1016/S0140-6736(21)01208-3
  • Heaviside C, Macintyre H, Vardoulakis S. The urban heat island: implications for health in a changing environment. Curr Environ Health Rep. 2017;4(3):296–305. doi: 10.1007/s40572-017-0150-3
  • Santamouris M. Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions. Sci Total Environ. 2015;512–513:582–598.
  • Lo CP, Quattrochi DA, Luvall JC. Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. Int J Remote Sens. 1997;18(2):287–304. doi: 10.1080/014311697219079
  • Vogt JA, Oke TR. Thermal remote sensing of urban climates. Remote Sens Environ. 2003;86:370–384. doi: 10.1016/S0034-4257(03)00079-8
  • Wang Y, Berardi U, Akbari H. Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energ Buildings. 2016;114(2):2–19. doi: 10.1016/j.enbuild.2015.06.046
  • Stotz A, Rapp K, Oksa J, et al. Effect of a brief heat exposure on blood pressure and physical performance of older women living in the community-a pilot-study. Int J Environ Res And Public Health. 2014;11(12):12623–12631. doi: 10.3390/ijerph111212623
  • Shiloh R, Munitz H, Stryjer R, et al. A significant correlation between ward temperature and the severity of symptoms in schizophrenia inpatients–a longitudinal study. Eur Neuropsychopharmacol. 2007;17(6–7):478–482. doi: 10.1016/j.euroneuro.2006.12.001
  • Tartarini F, Cooper P, Fleming R, et al. Indoor air temperature and agitation of nursing home residents with dementia. Am J Alzheimers Dis Other Demen. 2017;32(5):272–281. doi: 10.1177/1533317517704898
  • Trezza BM, Apolinario D, de Oliveira RS, et al. Environmental heat exposure and cognitive performance in older adults: a controlled trial. Age (Dordr). 2015;37(3):9783. doi: 10.1007/s11357-015-9783-z
  • Lo YC, Su WP, Mei SH, et al. Association between ambient temperature and cognitive function in a community-dwelling elderly population: a repeated measurement study. BMJ Open. 2021;11(12):e049160. doi: 10.1136/bmjopen-2021-049160
  • Kenny GP, Flouris AD, Yagouti A, et al. Towards establishing evidence-based guidelines on maximum indoor temperatures during hot weather in temperate continental climates. Temperature. 2019;6(1):11–36. doi: 10.1080/23328940.2018.1456257
  • Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives. Lancet 2013; 382: 260–72.
  • Cheng J. et al. Cardiorespiratory effects of heatwaves: A systematic review and meta-analysis of global epidemiological evidence. Environ Res. 2019; Oct:177:108610. doi: 10.1016/j.envres.2019.108610. Epub 2019 Jul 26.
  • Song X et al. Environ Sci Pollut Res Int. 2021 Nov;28(41):58035-58049. doi: 10.1007/s11356-021-14568-0. Epub 2019 Jul 26.
  • Zanobetti A, O’Neill MS, Gronlund CJ, Schwartz JD. Summer temperature variability and long-term survival among elderly peoplewith chronic disease Proc Natl Acad Sci USA 2012; 109: 6608–13.
  • De Blois J, Kjellstrom T, Agewall S, et al. The effects of climate change on cardiac health. Cardiology. 2015;131(4):209–217. doi: 10.1159/000398787
  • Wang Y, An S, Xing M, et al. Global warming and heart disease prevention. Eur J Prev Cardiol. 2018;25(12):1342. doi: 10.1177/2047487318774846
  • Seebaß K. Who is feeling the heat? vulnerabilities and exposures to heat stress—individual, social, and housing explanations. Nat Cult. 2017;12(2):137–161. doi: 10.3167/nc.2017.120203
  • Kim YO, Lee W, Kim H, et al. Social isolation and vulnerability to heatwave-related mortality in the urban elderly population: a time-series multi-community study in Korea. Environ Int. 2020;142:105868. doi: 10.1016/j.envint.2020.105868
  • Eisenman DP, Wilhalme H, Tseng CH, et al. Heat death associations with the built environment, social vulnerability and their interactions with rising temperature. Health & Place. 2016;41:89–99. doi: 10.1016/j.healthplace.2016.08.007
  • Chakalian PM, Kurtz L, Harlan SL, et al. Exploring the social, psychological, and behavioral mechanisms of heat vulnerability in the city of Phoenix, AZ. J Extreme Events. 2019;6(3n04):2050006. doi: 10.1142/S2345737620500062
  • Li Y, Sun Y, Li J, et al. Socioeconomic drivers of urban heat island effect: empirical evidence from major Chinese cities. Sustain Cities Soc. 2020;63:102425. doi: 10.1016/j.scs.2020.102425
  • Fouillet A, Rey G, Laurent F, et al. Excess mortality related to the August 2003 heat wave in France. Int Arch Occup Environ Health. 2006;80(1):16–24. doi: 10.1007/s00420-006-0089-4
  • Henderson SB, Ke M, Lee MJ, et al. Analysis of community deaths during the catastrophic 2021 heat dome: Early evidence to inform the public health response during subsequent events in greater Vancouver, Canada. Environ Epidemiol. 2022;6(1):e189. doi: 10.1097/EE9.0000000000000189
  • British Columbia Coroners Service. Extreme heat and human mortality: A review of heat-related deaths in BC in summer 2021. Report to the Chief Coroner of British Columbia. June 7, 2022. https://www2.gov.bc.ca/assets/gov/birth-adoption-death-marriage-and-divorce/deaths/coroners-service/death-review-panel/extreme_heat_death_review_panel_report.pdf
  • Mavrogianni A, Pathan A, Oikonomou E, et al. Inhabitant actions and summer overheating risk in London dwellings. Build Res Info. 2017;45(1–2):119–142. doi: 10.1080/09613218.2016.1208431
  • Bobb JF, Obermeyer Z, Wang Y, et al. Cause-specific risk of hospital admission related to extreme heat in older adults. JAMA. 2014;312(24):2659–2667. doi: 10.1001/jama.2014.15715
  • Patz JA, Frumkin H, Holloway T, et al. Climate change: challenges and opportunities for global health. JAMA. 2014;312(15):1565–1580. doi: 10.1001/jama.2014.13186
  • Watts N, Amann M, Arnell N, et al. The 2020 report of the lancet countdown on health and climate change: responding to converging crises. Lancet. 2021;397(10269):129–170. doi: 10.1016/S0140-6736(20)32290-X
  • Kenny GP, Yardley J, Brown C, et al. Heat stress in older individuals and patients with common chronic diseases. CMAJ. 2010;182(10):1053–1060. doi: 10.1503/cmaj.081050
  • Kenny GP, Notley SR, Flouris AD, et al. Climate change and heat exposure: impact on health in occupational and general populations. In: Adams W, Jardine J, editors. Exertional heat illness: a clinical and evidence-based guide. Switzerland AG: Springer Cham; 2020. p. 225–261.
  • Centre PC. Heat waves and health – a special report on climate change in Canada. Winnipeg, MN: Prairie Climate Centre;2019.
  • Khatana SAM, Werner RM, Groeneveld PW. Association of extreme heat with all-cause mortality in the contiguous US, 2008-2017. JAMA Netw Open. 2022;5(5):e2212957. doi: 10.1001/jamanetworkopen.2022.12957
  • Suzman R, Beard JR, Boerma T, et al. Health in an ageing world–what do we know? Lancet. 2015;385(9967):484–486. doi: 10.1016/S0140-6736(14)61597-X
  • World Health Organization. World report on ageing and health. 2015; https://www.who.int/publications/i/item/9789241565042
  • Bouchama A, Dehbi M, Mohamed G, et al. Prognostic factors in heat wave related deaths: a meta-analysis. Arch Intern Med. 2007;167(20):2170–2176. doi: 10.1001/archinte.167.20.ira70009
  • Semenza JC, Je M, Flanders WD, et al. Excess hospital admissions during the July 1995 heat wave in Chicago. Am J Prev Med. 1999;16(4):269–277. doi: 10.1016/S0749-3797(99)00025-2
  • Curriero FC, Heiner KS, Samet JM, et al. Temperature and mortality in 11 cities of the eastern United States. Am J Epidemiol. 2002;155(1):80–87. doi: 10.1093/aje/155.1.80
  • Basu R, Malig B. High ambient temperature and mortality in California: exploring the roles of age, disease, and mortality displacement. Environ Res. 2011;111(8):1286–1292. doi: 10.1016/j.envres.2011.09.006
  • Kravchenko J, Abernethy AP, Fawzy M, et al. Minimization of heatwave morbidity and mortality. Am J Prev Med. 2013;44(3):274–282. doi: 10.1016/j.amepre.2012.11.015
  • Vandentorren S, Bretin P, Zeghnoun A, et al. August 2003 heat wave in France: risk factors for death of elderly people living at home. Eur J Public Health. 2006;16(6):583–591. doi: 10.1093/eurpub/ckl063
  • Haines A, Ebi K, Solomon CG. The imperative for climate action to protect health. N Engl J Med. 2019;380(3):263–273. doi: 10.1056/NEJMra1807873
  • Mayrhuber EA, Duckers MLA, Wallner P, et al. Vulnerability to heatwaves and implications for public health interventions – a scoping review. Environ Res. 2018;166:42–54. doi: 10.1016/j.envres.2018.05.021
  • Murage P, Kovats S, Sarran C, et al. What individual and neighbourhood-level factors increase the risk of heat-related mortality? A case-crossover study of over 185,000 deaths in London using high-resolution climate datasets. Environ Int. 2020;134:105292. doi: 10.1016/j.envint.2019.105292
  • Kovats RS, Hajat S. Heat stress and public health: a critical review. Annu Rev Public Health. 2008;29(1):41–55. doi: 10.1146/annurev.publhealth.29.020907.090843
  • Jang J, Natarajan S, Lee J, et al. Comparative analysis of overheating risk for typical dwellings and passivhaus in the UK. Energies. 2022;15(10):3829. doi: 10.3390/en15103829
  • Dogra S, Clarke JM, Copeland JL. Prolonged sedentary time and physical fitness among Canadian men and women aged 60 to 69. Health Rep. 2017;28(2):3–9.
  • Barriopedro D, Fischer EM, Luterbacher J, et al. The hot summer of 2010: redrawing the temperature record map of Europe. Science. 2011;332(6026):220–224. doi: 10.1126/science.1201224
  • Meehl GA, Tebaldi C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science. 2004;305(5686):994–997. doi: 10.1126/science.1098704
  • World Health Organization. Quantitative risk assessment of the effects of climate change on selected causes of death, 2030s and 2050s. 2014. https://www.who.int/publications/i/item/9789241507691
  • Del Bene VE. Temperature. In: Walker HK, Hall WD, Hurst JW, editors, Clinical methods: the history, physical, and laboratory examinations, 3rd ed., Chapter 218 Boston: Buttersworths; 1990. pp. 990–993.
  • Gagge AP, Gonzales RR. Mechanisms of heat exchange: Biophysics and physiology. In: Blatteis CM, Fregley MJ, editors. Handbook of physiology. Environmental physiology. Vol. II, Sect. 4, Chapter 4. Bethesda, MD: American Physiological Society; 1996. pp. 45–84.
  • Kenny GP, Jay O. Thermometry, calorimetry, and mean body temperature during heat stress. Compr Physiol. 2013;3:1–31.
  • Flouris AD, Dinas PC, Ioannou LG, et al. Workers’ health and productivity under occupational heat strain: a systematic review and meta-analysis. Lancet Planet Health. 2018;2(12):e521–e531. doi: 10.1016/S2542-5196(18)30237-7
  • Kenny GP, Wilson TE, Flouris AD, et al. Heat exhaustion. Handb Clin Neurol. 2018;157:505–529.
  • Masselot P, Mistry M, Vanoli J, et al. Excess mortality attributed to heat and cold: a health impact assessment study in 854 cities in Europe. Lancet Planet Health. 2023;7(4):e271–e281. doi: 10.1016/S2542-5196(23)00023-2
  • Meade RD, Akerman AP, Notley SR, et al. Physiological factors characterizing heat-vulnerable older adults: a narrative review. Environ Int. 2020;144:105909. doi: 10.1016/j.envint.2020.105909
  • Meade RD, Notley SR, Kenny GP. Aging and human heat dissipation during exercise-heat stress: an update and future directions. Curr Opin Physiol. 2019;10:219–225. doi: 10.1016/j.cophys.2019.07.003
  • Cramer MN, Gagnon D, Laitano O, et al. Human temperature regulation under heat stress in health, disease, and injury. Physiol Rev. 2022;102(4):1907–1989. doi: 10.1152/physrev.00047.2021
  • Dufour A, Candas V. Ageing and thermal responses during passive heat exposure: sweating and sensory aspects. Eur J Appl Physiol. 2007;100(1):19–26. doi: 10.1007/s00421-007-0396-9
  • Sagawa S, Shiraki K, Yousef MK, et al. Sweating and cardiovascular responses of aged men to heat exposure. J Gerontol. 1988;43(1):M1–8. doi: 10.1093/geronj/43.1.M1
  • Stapleton JM, Poirier MP, Flouris AD, et al. Aging impairs heat loss, but when does it matter? J Appl Physiol. 2015;118(3):299–309. doi: 10.1152/japplphysiol.00722.2014
  • Stapleton JM, Poirier MP, Flouris AD, et al. At what level of heat load are age-related impairments in the ability to dissipate heat evident in females? PLOS ONE. 2015;10(3):e0119079. doi: 10.1371/journal.pone.0119079
  • D’Souza AW, Notley SR, Kenny GP. The relation between age and sex on whole-body heat loss during exercise-heat stress. Medicine And Science In Sports And Exercise. 2020;52(10):2242–2249. doi: 10.1249/MSS.0000000000002373
  • Stapleton JM, Larose J, Simpson C, et al. Do older adults experience greater thermal strain during heat waves? Appl Physiol Nutr Metab. 2014;39(3):292–298. doi: 10.1139/apnm-2013-0317
  • Kenny GP, Poirier MP, Metsios GS, et al. Hyperthermia and cardiovascular strain during an extreme heat exposure in young versus older adults. Temperature. 2016;4(1):79–88. doi: 10.1080/23328940.2016.1230171
  • Larose J, Boulay P, Sigal RJ, et al. Age-related decrements in heat dissipation during physical activity occur as early as the age of 40. PLOS ONE. 2013;8(12):e83148. doi: 10.1371/journal.pone.0083148
  • Larose J, Boulay P, Wright-Beatty HE, et al. Age-related differences in heat loss capacity occur under both dry and humid heat stress conditions. J Appl Physiol. 2014;117(1):69–79. doi: 10.1152/japplphysiol.00123.2014
  • Larose J, Wright HE, Stapleton J, et al. Whole-body heat loss is reduced in older males during short bouts of intermittent exercise. Am J Physiol. 2013;305(6):R619–629. doi: 10.1152/ajpregu.00157.2013
  • Poirier MP, Notley SR, Boulay P, et al. Type 2 diabetes does not exacerbate body heat storage in older adults during brief, extreme passive heat exposure. Temperature. 2020;7(3):263–269. doi: 10.1080/23328940.2020.1736760
  • Drinkwater BL, Bedi JF, Loucks AB, et al. Sweating sensitivity and capacity of women in relation to age. J Appl Physiol. 1982;53(3):671–676. doi: 10.1152/jappl.1982.53.3.671
  • Shoenfeld Y, Udassin R, Shapiro Y, et al. Age and sex difference in response to short exposure to extreme dry heat. J Appl Physiol. 1978;44(1):1–4. doi: 10.1152/jappl.1978.44.1.1
  • Kenny GP, Notley SR, Gagnon D. Direct calorimetry: a brief historical review of its use in the study of human metabolism and thermoregulation. Eur J Appl Physiol. 2017;117(9):1765–1785. doi: 10.1007/s00421-017-3670-5
  • Meade RD, Notley SR, Akerman AP, et al. Physiological responses to 9 hours of heat exposure in young and older adults. Part I: body temperature and hemodynamic regulation. J Appl Physiol. 2023;135(3):673–687. doi: 10.1152/japplphysiol.00227.2023
  • Kenney WL, Munce TA. Invited review: aging and human temperature regulation. J Appl Physiol. 2003;95(6):2598–2603. doi: 10.1152/japplphysiol.00202.2003
  • Shibasaki M, Okazaki K, Inoue T. Aging and thermoregulation. J Phys Fitness Sports Med. 2013;2(1):37–47. doi: 10.7600/jpfsm.2.37
  • Gravel H, Chaseling GK, Barry H, et al. Cardiovascular control during heat stress in older adults: time for an update. Am J Physiol Heart Circ Physiol. 2021;320(1):H411–H416. doi: 10.1152/ajpheart.00536.2020
  • Kenney WL, Craighead DH, Alexander LM. Heat waves, aging, and human cardiovascular health. Medicine And Science In Sports And Exercise. 2014;46(10):1891–1899. doi: 10.1249/MSS.0000000000000325
  • Astrom DO, Forsberg B, Rocklov J. Heat wave impact on morbidity and mortality in the elderly population: a review of recent studies. Maturitas. 2011;69(2):99–105. doi: 10.1016/j.maturitas.2011.03.008
  • Donaldson GC, Keatinge WR, Saunders RD. Cardiovascular responses to heat stress and their adverse consequences in healthy and vulnerable human populations. Int J Hyperthermia. 2003;19(3):225–235. doi: 10.1080/0265673021000058357
  • Millyard A, Layden JD, Pyne DB, et al. Impairments to thermoregulation in the elderly during heat exposure events. Gerontol Geriatr Med. 2020;6:2333721420932432. doi: 10.1177/2333721420932432
  • Greaney JL, Stanhewicz AE, Proctor DN, et al. Impairments in central cardiovascular function contribute to attenuated reflex vasodilation in aged skin. J Appl Physiol. 2015;119(12):1411–1420. doi: 10.1152/japplphysiol.00729.2015
  • Kenney WL, Morgan AL, Farquhar WB, et al. Decreased active vasodilator sensitivity in aged skin. Am J Physiol. 1997;272(4 Pt 2):H1609–1614. doi: 10.1152/ajpheart.1997.272.4.H1609
  • Gagnon D, Romero SA, Ngo H, et al. Healthy aging does not compromise the augmentation of cardiac function during heat stress. J Appl Physiol. 2016;121(4):885–892. doi: 10.1152/japplphysiol.00643.2016
  • Minson CT, Wladkowski SL, Cardell AF, et al. Age alters the cardiovascular response to direct passive heating. J Appl Physiol. 1998;84(4):1323–1332. doi: 10.1152/jappl.1998.84.4.1323
  • Rowell LB. Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev. 1974;54(1):75–159. doi: 10.1152/physrev.1974.54.1.75
  • Crandall CG, Wilson TE. Human cardiovascular responses to passive heat stress. Compr Physiol. 2015;5(1):17–43.
  • Monahan KD. Effect of aging on baroreflex function in humans. Am J Physiol Regul Integr Comp Physiol. 2007;293(1):R3–R12. doi: 10.1152/ajpregu.00031.2007
  • Schlader ZJ, Wilson TE, Crandall CG. Mechanisms of orthostatic intolerance during heat stress. Auton Neurosci. 2016;196:37–46. doi: 10.1016/j.autneu.2015.12.005
  • Conti S, Masocco M, Meli P, et al. General and specific mortality among the elderly during the 2003 heat wave in Genoa (Italy). Environ Res. 2007;103(2):267–274. doi: 10.1016/j.envres.2006.06.003
  • Luber G, McGeehin M. Climate change and extreme heat events. Am J Prev Med. 2008;35(5):429–435. doi: 10.1016/j.amepre.2008.08.021
  • Fuhrmann CM, Sugg MM, Konrad CE 2nd, et al. Impact of extreme heat events on emergency department visits in North Carolina (2007-2011). J Community Health. 2016;41(1):146–156. doi: 10.1007/s10900-015-0080-7
  • Hondula DM, Davis RE, Saha MV, et al. Geographic dimensions of heat-related mortality in seven U.S. cities. Environ Res. 2015;138:439–452. doi: 10.1016/j.envres.2015.02.033
  • Knowlton K, Rotkin-Ellman M, King G, et al. The 2006 California heat wave: impacts on hospitalizations and emergency department visits. Environ Health Perspect. 2009;117(1):61–67. doi: 10.1289/ehp.11594
  • Lin S, Luo M, Walker RJ, et al. Extreme high temperatures and hospital admissions for respiratory and cardiovascular diseases. Epidemiology. 2009;20(5):738–746. doi: 10.1097/EDE.0b013e3181ad5522
  • Rey G, Jougla E, Fouillet A, et al. The impact of major heat waves on all-cause and cause-specific mortality in France from 1971 to 2003. Int Arch Occup Environ Health. 2007;80(7):615–626. doi: 10.1007/s00420-007-0173-4
  • Robine JM, Cheung SL, Le Roy S, et al. Death toll exceeded 70,000 in Europe during the summer of 2003. C R Biol. 2008;331(2):171–178. doi: 10.1016/j.crvi.2007.12.001
  • Cleland VJ, Ball K, Magnussen C, et al. Socioeconomic position and the tracking of physical activity and cardiorespiratory fitness from childhood to adulthood. Am J Epidemiol. 2009;170(9):1069–1077. doi: 10.1093/aje/kwp271
  • Garrett AT, Goosens NG, Rehrer NG, et al. Induction and decay of short-term heat acclimation. Eur J Appl Physiol. 2009;107(6):659–670. doi: 10.1007/s00421-009-1182-7
  • Gagnon D, Kenny GP. Does sex have an independent effect on thermoeffector responses during exercise in the heat? J Physiol. 2012;590(Pt 23):5963–5973. doi: 10.1113/jphysiol.2012.240739
  • Gagnon D, Kenny GP. Sex modulates whole-body sudomotor thermosensitivity during exercise. J Physiol. 2011;589(Pt 24):6205–6217. doi: 10.1113/jphysiol.2011.219220
  • Gagnon D, Crandall CG, Kenny GP. Sex differences in postsynaptic sweating and cutaneous vasodilation. J Appl Physiol. 2013;114(3):394–401. doi: 10.1152/japplphysiol.00877.2012
  • Jiao A, Yu C, Xiang Q, et al. Impact of summer heat on mortality and years of life lost: application of a novel indicator of daily excess hourly heat. Environ Res. 2019;172:596–603. doi: 10.1016/j.envres.2019.01.056
  • Rocklov J, Forsberg B, Ebi K, et al. Susceptibility to mortality related to temperature and heat and cold wave duration in the population of Stockholm County, Sweden. Glob Health Action. 2014;7(1):22737. doi: 10.3402/gha.v7.22737
  • DeCastro M, Gomez-Gesteira M, Ramos AM, et al. Effects of het waves on human mortality, Galicia Spain. Clim Res. 2011;48(2):331–341. doi: 10.3354/cr00988
  • Basagana X, Sartini C, Barrera-Gomez J, et al. Heat waves and cause-specific mortality at all ages. Epidemiology. 2011;22(6):765–772. doi: 10.1097/EDE.0b013e31823031c5
  • Diaz J, Jordan A, Garcia R, et al. Heat waves in Madrid 1986-1997: effects on the health of the elderly. Int Arch Occup Environ Health. 2002;75(3):163–170. doi: 10.1007/s00420-001-0290-4
  • Bell ML, Ms O, Ranjit N, et al. Vulnerability to heat-related mortality in Latin America: a case-crossover study in Sao Paulo, Brazil, Santiago, Chile and Mexico City, Mexico. Int J Epidemiol. 2008;37(4):796–804. doi: 10.1093/ije/dyn094
  • O’Neill MS, Carter R, Kish JK, et al. Preventing heat-related morbidity and mortality: new approaches in a changing climate. Maturitas. 2009;64(2):98–103. doi: 10.1016/j.maturitas.2009.08.005
  • Lin S, Hsu WH, Van Zutphen AR, et al. Excessive heat and respiratory hospitalizations in New York State: estimating current and future public health burden related to climate change. Environ Health Perspect. 2012;120(11):1571–1577. doi: 10.1289/ehp.1104728
  • van Steen Y, Ntarladima AM, Grobbee R, et al. Sex differences in mortality after heat waves: are elderly women at higher risk? Int Arch Occup Environ Health. 2019;92(1):37–48. doi: 10.1007/s00420-018-1360-1
  • Ingole V, Kovats S, Schumann B, et al. Socioenvironmental factors associated with heat and cold-related mortality in Vadu HDSS, western India: a population-based case-crossover study. Int J Biometeorol. 2017;61(10):1797–1804. doi: 10.1007/s00484-017-1363-8
  • Folkerts MA, Brode P, Botzen WJW, et al. Sex differences in temperature-related all-cause mortality in the Netherlands. Int Arch Occup Environ Health. 2022;95(1):249–258. doi: 10.1007/s00420-021-01721-y
  • Borrell C, Mari-Dell’olmo M, Rodriguez-Sanz M, et al. Socioeconomic position and excess mortality during the heat wave of 2003 in Barcelona. Eur J Epidemiol. 2006;21(9):633–640. doi: 10.1007/s10654-006-9047-4
  • Bogdanovic DC, Milosevic ZG, Lazarevic KK, et al. The impact of the July 2007 heat wave on daily mortality in Belgrade, Serbia. Cent Eur J Public Health. 2013;21(3):140–145. doi: 10.21101/cejph.a3840
  • Achebak H, Devolder D, Ballester J. Trends in temperature-related age-specific and sex-specific mortality from cardiovascular diseases in Spain: a national time-series analysis. Lancet Planet Health. 2019;3(7):e297–e306. doi: 10.1016/S2542-5196(19)30090-7
  • Yanovich R, Ketko I, Charkoudian N. Sex differences in human thermoregulation: relevance for 2020 and beyond. Physiology (Bethesda). 2020;35(3):177–184. doi: 10.1152/physiol.00035.2019
  • Davido A, Patzak A, Dart T, et al. Risk factors for heat related death during the August 2003 heat wave in Paris, France, in patients evaluated at the emergency department of the Hopital Europeen Georges Pompidou. Emerg Med J. 2006;23(7):515–518. doi: 10.1136/emj.2005.028290
  • Faurie C, Varghese BM, Liu J, et al. Association between high temperature and heatwaves with heat-related illnesses: a systematic review and meta-analysis. Sci Total Environ. 2022;852:158332. doi: 10.1016/j.scitotenv.2022.158332
  • Horstman DH, Horvath SM. Cardiovascular and temperature regulatory changes during progressive dehydration and euhydration. J Appl Physiol. 1972;33(4):446–450. doi: 10.1152/jappl.1972.33.4.446
  • Meade RD, Notley SR, D’Souza AW, et al. Interactive effects of age and hydration state on human thermoregulatory function during exercise in hot-dry conditions. Acta Physiol (Oxf). 2019;226(1):e13226. doi: 10.1111/apha.13226
  • Sawka MN, Cheuvront SN, Kenefick RW. Hypohydration and human performance: impact of environment and physiological mechanisms. Sports Med. 2015;45(1):S51–60. doi: 10.1007/s40279-015-0395-7
  • Miescher E, Fortney SM. Responses to dehydration and rehydration during heat exposure in young and older men. Am J Physiol. 1989;257(5 Pt 2):R1050–1056. doi: 10.1152/ajpregu.1989.257.5.R1050
  • Ainslie PN, Campbell IT, Frayn KN, et al. Energy balance, metabolism, hydration, and performance during strenuous hill walking: the effect of age. J Appl Physiol. 2002;93(2):714–723. doi: 10.1152/japplphysiol.01249.2001
  • Allison SP, Lobo DN. Fluid and electrolytes in the elderly. Curr Opin Clin Nutr Metab Care. 2004;7(1):27–33. doi: 10.1097/00075197-200401000-00006
  • Davidhizar R, Dunn CL, Hart AN. A review of the literature on how important water is to the world’s elderly population. Int Nurs Rev. 2004;51(3):159–166. doi: 10.1111/j.1466-7657.2004.00224.x
  • Schols JM, De Groot CP, van der Cammen TJ, et al. Preventing and treating dehydration in the elderly during periods of illness and warm weather. J Nutr Health Aging. 2009;13(2):150–157. doi: 10.1007/s12603-009-0023-z
  • Watso JC, Farquhar WB. Hydration Status and Cardiovascular Function. Nutrients. 2019;11(8):1866. doi: 10.3390/nu11081866
  • Kettaneh A, Fardet L, Mario N, et al. The 2003 heat wave in France: hydratation status changes in older inpatients. Eur J Epidemiol. 2010;25(7):517–524. doi: 10.1007/s10654-010-9478-9
  • Phillips PA, Rolls BJ, Ledingham JG, et al. Reduced thirst after water deprivation in healthy elderly men. N Engl J Med. 1984;311(12):753–759. doi: 10.1056/NEJM198409203111202
  • Takamata A, Ito T, Yaegashi K, et al. Effect of an exercise-heat acclimation program on body fluid regulatory responses to dehydration in older men. Am J Physiol. 1999;277(4 Pt 2):R1041–1050. doi: 10.1152/ajpregu.1999.277.4.R1041
  • Davies I, Pa O, Ka M, et al. Age-associated alterations in thirst and arginine vasopressin in response to a water or sodium load. Age Ageing. 1995;24(2):151–159. doi: 10.1093/ageing/24.2.151
  • Mack GW, Weseman CA, Langhans GW, et al. Body fluid balance in dehydrated healthy older men: thirst and renal osmoregulation. J Appl Physiol. 1994;76(4):1615–1623. doi: 10.1152/jappl.1994.76.4.1615
  • Westaway K, Frank O, Husband A, et al. Medicines can affect thermoregulation and accentuate the risk of dehydration and heat-related illness during hot weather. J Clin Pharm Ther. 2015;40(4):363–367. doi: 10.1111/jcpt.12294
  • Kenny GP, Sigal RJ, McGinn R. Body temperature regulation in diabetes. Temperature. 2016;3(1):119–145. doi: 10.1080/23328940.2015.1131506
  • Schwartz J. Who is sensitive to extremes of temperature?: A case-only analysis. Epidemiology. 2005;16(1):67–72. doi: 10.1097/01.ede.0000147114.25957.71
  • Hajat S, Haines A, Sarran C, et al. The effect of ambient temperature on type-2-diabetes: case-crossover analysis of 4+ million GP consultations across England. Environ Health. 2017;16(1):73. doi: 10.1186/s12940-017-0284-7
  • Semenza JC, Rubin CH, Falter KH, et al. Heat-related deaths during the July 1995 heat wave in Chicago. N Engl J Med. 1996;335(2):84–90. doi: 10.1056/NEJM199607113350203
  • Moon J. The effect of the heatwave on the morbidity and mortality of diabetes patients; a meta-analysis for the era of the climate crisis. Environ Res. 2021;195:110762. doi: 10.1016/j.envres.2021.110762
  • Gao D, Friedman S, Hosler A, et al. Association between extreme ambient heat exposure and diabetes-related hospital admissions and emergency department visits: A systematic review. Hyg Environ Health Adv. 2022;4:4. doi: 10.1016/j.heha.2022.100031
  • Moses RG, Patterson MJ, Regan JM, et al. A non-linear effect of ambient temperature on apparent glucose tolerance. Diabetes Res Clin Pract. 1997;36(1):35–40. doi: 10.1016/S0168-8227(97)01391-0
  • Koivisto VA, Fortney S, Hendler R, et al. A rise in ambient temperature augments insulin absorption in diabetic patients. Metabolism. 1981;30(4):402–405. doi: 10.1016/0026-0495(81)90122-0
  • Notley SR, Poirier MP, Sigal RJ, et al. Exercise heat stress in patients with and without type 2 diabetes. JAMA. 2019;322(14):1409–1411. doi: 10.1001/jama.2019.10943
  • Yardley JE, Stapleton JM, Sigal RJ, et al. Do heat events pose a greater health risk for individuals with type 2 diabetes? Diabetes Technol Ther. 2013;15(6):520–529. doi: 10.1089/dia.2012.0324
  • Fealey RD, Low PA, Thomas JE. Thermoregulatory sweating abnormalities in diabetes mellitus. Mayo Clin Proc. 1989;64(6):617–628. doi: 10.1016/S0025-6196(12)65338-5
  • Kihara M, Opfer-Gehrking TL, Low PA. Comparison of directly stimulated with axon-reflex-mediated sudomotor responses in human subjects and in patients with diabetes. Muscle Nerve. 1993;16(6):655–660. doi: 10.1002/mus.880160612
  • Kirby NV, Meade RD, Poirier MP, et al. Association between haemoglobin A(1c) and whole-body heat loss during exercise-heat stress in physically active men with type 2 diabetes. Exp Physiol. 2023;108(3):338–343. doi: 10.1113/EP090915
  • Yardley JE, Stapleton JM, Carter MR, et al. Is whole-body thermoregulatory function impaired in type 1 diabetes mellitus? Curr Diabetes Rev. 2013;9(2):126–136. doi: 10.2174/1573399811309020004
  • Klinenberg E. Heat wave: a social autopsy of disaster in Chicago. Chicago, Il: Chicago University Press; 2002.
  • Folkow B. Physiological aspects of primary hypertension. Physiol Rev. 1982;62(2):347–504. doi: 10.1152/physrev.1982.62.2.347
  • Greene AS, Tonellato PJ, Lui J, et al. Microvascular rarefaction and tissue vascular resistance in hypertension. Am J Physiol. 1989;256(1 Pt 2):H126–131. doi: 10.1152/ajpheart.1989.256.1.H126
  • Carberry PA, Shepherd AM, Johnson JM. Resting and maximal forearm skin blood flows are reduced in hypertension. Hypertension. 1992;20(3):349–355. doi: 10.1161/01.HYP.20.3.349
  • Drummond PD. Thermoregulatory response to passive body heating in borderline hypertension. Clin Auton Res. 1993;3(4):233–238. doi: 10.1007/BF01829011
  • Kellogg J, Morris SR, Rodriguez SB, et al. Thermoregulatory reflexes and cutaneous active vasodialtion during heat stress in hypertensive humans. J Appl Physiol. 1998;85(1):175–180. doi: 10.1152/jappl.1998.85.1.175
  • Kenney WL, Kamon E. Comparative physiological responses of normotensive and essentially hypertensive men to exercise in the heat. Eur J Appl Physiol Occup Physiol. 1984;52(2):196–201. doi: 10.1007/BF00433392
  • Kenney WL, Kamon E, Buskirk ER. Effect of mild essential hypertension on control of forearm blood flow during exercise in the heat. J Appl Physiol. 1984;56(4):930–935. doi: 10.1152/jappl.1984.56.4.930
  • Fonseca SF, Teles MC, Ribeiro VG, et al. Hypertension is associated with greater heat exchange during exercise recovery in a hot environment. Braz J Med Biol Res. 2015;48(12):1122–1129. doi: 10.1590/1414-431x20154532
  • Ribeiro GA, Rodrigues LO, Moreira MC, et al. Thermoregulation in hypertensive men exercising in the heat with water ingestion. Braz J Med Biol Res. 2004;37(3):409–417. doi: 10.1590/S0100-879X2004000300019
  • Akerman AP, Notley SR, Sigal RJ, et al. Impact of uncomplicated controlled hypertension on thermoregulation during exercise-heat stress. J Hum Hypertens. 2021;35(10):880–883. doi: 10.1038/s41371-020-00402-6
  • Lomax P, Schonbaum E. The effects of drugs on thermoregulation during exposure to hot environments. Prog Brain Res. 1998;115:193–204.
  • Cheshire WP, Fealey RD. Drug-induced hyperhidrosis and hypohidrosis: incidence, prevention and management. Drug Saf. 2008;31(2):109–126. doi: 10.2165/00002018-200831020-00002
  • Hajat S, O’Connor M, Kosatsky T. Health effects of hot weather: from awareness of risk factors to effective health protection. Lancet. 2010;375(9717):856–863. doi: 10.1016/S0140-6736(09)61711-6
  • Herman RM, Brower JB, Stoddard DG, et al. Prevalence of somatic small fiber neuropathy in obesity. Int J Obes (Lond). 2007;31(2):226–235. doi: 10.1038/sj.ijo.0803418
  • Vroman NB, Buskirk ER, Hodgson JL. Cardiac output and skin blood flow in lean and obese individuals during exercise in the heat. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(1 Pt 1):69–74. doi: 10.1152/jappl.1983.55.1.69
  • Chung NK, Pin CH. Obesity and the occurrence of heat disorders. Mil Med. 1996;161(12):739–742. doi: 10.1093/milmed/161.12.739
  • Mirchandani HG, McDonald G, Hood IC, et al. Heat-related deaths in Philadelphia–1993. Am J Forensic Med Pathol. 1996;17(2):106–108. doi: 10.1097/00000433-199606000-00004
  • Going S, Williams D, Lohman T. Aging and body composition: biological changes and methodological issues. Exerc Sport Sci Rev. 1995;23:411–458. doi: 10.1249/00003677-199500230-00016
  • Wing RR, Matthews KA, Kuller LH, et al. Weight gain at the time of menopause. Arch Intern Med. 1991;151(1):97–102. doi: 10.1001/archinte.1991.00400010111016
  • McGinn R, Poirier MP, Louie JC, et al. Increasing age is a major risk factor for susceptibility to heat stress during physical activity. Appl Physiol Nutr Metab. 2017;42(11):1232–1235. doi: 10.1139/apnm-2017-0322
  • Bunker A, Wildenhain J, Vandenbergh A, et al. Effects of air temperature on climate-sensitive mortality and morbidity outcomes in the elderly; a systematic review and meta-analysis of epidemiological evidence. EBioMedicine. 2016;6:258–268. doi: 10.1016/j.ebiom.2016.02.034
  • Vaidyanathan A, Malilay J, Schramm P, et al. Heat-Related Deaths – United States, 2004-2018. MMWR Morb Mortal Wkly Rep. 2020;69(24):729–734. doi: 10.15585/mmwr.mm6924a1
  • Ishigami A, Hajat S, Kovats RS, et al. An ecological time-series study of heat-related mortality in three European cities. Environ Health. 2008;7(1):5. doi: 10.1186/1476-069X-7-5
  • Huynen MM, Martens P, Schram D, et al. The impact of heat waves and cold spells on mortality rates in the Dutch population. Environ Health Perspect. 2001;109(5):463–470. doi: 10.1289/ehp.01109463
  • Braga AL, Zanobetti A, Schwartz J. The effect of weather on respiratory and cardiovascular deaths in 12 U.S. cities. Environ Health Perspect. 2002;110(9):859–863. doi: 10.1289/ehp.02110859
  • Basu R. High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008. Environ Health. 2009;8(1):40. doi: 10.1186/1476-069X-8-40
  • Son JY, Lee JT, Anderson GB, et al. The impact of heat waves on mortality in seven major cities in Korea. Environ Health Perspect. 2012;120(4):566–571. doi: 10.1289/ehp.1103759
  • Rainham DG, Smoyer-Tomic KE. The role of air pollution in the relationship between a heat stress index and human mortality in Toronto. Environ Res. 2003;93(1):9–19. doi: 10.1016/S0013-9351(03)00060-4
  • Basu R, Ostro BD. A multicounty analysis identifying the populations vulnerable to mortality associated with high ambient temperature in California. Am J Epidemiol. 2008;168(6):632–637. doi: 10.1093/aje/kwn170
  • Choi GY, Choi JN, Kwon HJ. The impact of high apparent temperature on the increase of summertime disease-related mortality in seoul: 1991-2000. J Prev Med Public Health. 2005;38(3):283–290.
  • Liu J, Varghese BM, Hansen A, et al. Heat exposure and cardiovascular health outcomes: a systematic review and meta-analysis. Lancet Planet Health. 2022;6(6):e484–e495. doi: 10.1016/S2542-5196(22)00117-6
  • Andersen I, Jensen PL, Junker P, et al. The effects of moderate heat stress on patients with ischemic heart disease. Scand J Work Environ Health. 1976;2(4):256–268. doi: 10.5271/sjweh.2804
  • Walsh J, Prpic R, Goodman C, et al. Thermoregulatory responses in post-coronary artery bypass surgery and healthy males during moderate exercise in warm and cool environments. J Cardiopulm Rehabil. 2002;22(1):31–37. doi: 10.1097/00008483-200201000-00004
  • Cui J, Arbab-Zadeh A, Prasad A, et al. Effects of heat stress on thermoregulatory responses in congestive heart failure patients. Circulation. 2005;112(15):2286–2292. doi: 10.1161/CIRCULATIONAHA.105.540773
  • Green DJ, Maiorana AJ, Siong JH, et al. Impaired skin blood flow response to environmental heating in chronic heart failure. Eur Heart J. 2006;27(3):338–343. doi: 10.1093/eurheartj/ehi655
  • Bouchama A, Knochel JP. Heat stroke. N Engl J Med. 2002;346(25):1978–1988. doi: 10.1056/NEJMra011089
  • Cui J, Boehmer JP, Blaha C, et al. Chronic heart failure does not attenuate the total activity of sympathetic outflow to skin during whole-body heating. Circ Heart Fail. 2013;6(2):271–278. doi: 10.1161/CIRCHEARTFAILURE.112.000135
  • Keatinge WR, Coleshaw SR, Easton JC, et al. Increased platelet and red cell counts, blood viscosity, and plasma cholesterol levels during heat stress, and mortality from coronary and cerebral thrombosis. Am J Med. 1986;81(5):795–800. doi: 10.1016/0002-9343(86)90348-7
  • Zhao Y, Huang Z, Wang S, et al. Morbidity burden of respiratory diseases attributable to ambient temperature: a case study in a subtropical city in China. Environ Health. 2019;18(1):89. doi: 10.1186/s12940-019-0529-8
  • O’Neill MS, Hajat S, Zanobetti A, et al. Impact of control for air pollution and respiratory epidemics on the estimated associations of temperature and daily mortality. Int J Biometeorol. 2005;50(2):121–129. doi: 10.1007/s00484-005-0269-z
  • Li T, Ban J, Horton RM, et al. Heat-related mortality projections for cardiovascular and respiratory disease under the changing climate in Beijing, China. Sci Rep. 2015;5(1):11441. doi: 10.1038/srep11441
  • McCormack MC, Belli AJ, Waugh D, et al. Respiratory effects of indoor heat and the interaction with air pollution in chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2016;13(12):2125–2131. doi: 10.1513/AnnalsATS.201605-329OC
  • Shirinde J, Wichmann J. Temperature modifies the association between air pollution and respiratory disease mortality in Cape Town, South Africa. Int J Environ Health Res. 2022;33(11):1–10. doi: 10.1080/09603123.2022.2076813
  • Martin-Latry K, Goumy MP, Latry P, et al. Psychotropic drugs use and risk of heat-related hospitalisation. Eur Psychiatry. 2007;22(6):335–338. doi: 10.1016/j.eurpsy.2007.03.007
  • Stachenfeld NS, Mack GW, Takamata A, et al. Thirst and fluid regulatory responses to hypertonicity in older adults. Am J Physiol. 1996;271(3 Pt 2):R757–765. doi: 10.1152/ajpregu.1996.271.3.R757
  • Collins KJ, Extonsmith AN, Dore C. Urban hypothermia - preferred temperature and thermal perception in old age. Br Med J. 1981;282(6259):175–177. doi: 10.1136/bmj.282.6259.175
  • Taylor NA, Allsopp NK, Parkes DG. Preferred room temperature of young vs aged males: the influence of thermal sensation, thermal comfort, and affect. J Gerontol A Biol Sci Med Sci. 1995;50(4):M216–221. doi: 10.1093/gerona/50A.4.M216
  • Schlader ZJ, Coleman GL, Sackett JR, et al. Behavioral thermoregulation in older adults with cardiovascular co-morbidities. Temperature. 2018;5(1):70–85. doi: 10.1080/23328940.2017.1379585
  • McGarr GW, Meade RD, Notley SR, et al. Physiological responses to 9 hours of heat exposure in young and older adults. Part III: Association with self-reported symptoms and mood-state. J Appl Physiol. 2024;136(2):408–420. doi: 10.1152/japplphysiol.00740.2023
  • Abrahamson V, Wolf J, Lorenzoni I, et al. Perceptions of heatwave risks to health: interview-based study of older people in London and Norwich, UK. J Public Health (Oxf). 2009;31(1):119–126. doi: 10.1093/pubmed/fdn102
  • Hansen A, Bi P, Nitschke M, et al. The effect of heat waves on mental health in a temperate Australian city. Environ Health Perspect. 2008;116(10):1369–1375. doi: 10.1289/ehp.11339
  • Shiloh R, Shapira A, Potchter O, et al. Effects of climate on admission rates of schizophrenia patients to psychiatric hospitals. Eur Psychiatry. 2005;20(1):61–64. doi: 10.1016/j.eurpsy.2004.09.020
  • Lee MJ, Ke M, Kuo M, et al. Chronic diseases associated with mortality in British Columbia, Canada During the 2021 Western North America extreme heat event. Geohealth. 2023;7(3):e2022GH000729. doi: 10.1029/2022GH000729
  • Flynn A, McGreevy C, Mulkerrin EC. Why do older patients die in a heatwave? QJM. 2005;98(3):227–229. doi: 10.1093/qjmed/hci025
  • Hermesh H, Shiloh R, Epstein Y, et al. Heat intolerance in patients with chronic schizophrenia maintained with antipsychotic drugs. Am J Psychiatry. 2000;157(8):1327–1329. doi: 10.1176/appi.ajp.157.8.1327
  • Kovats RS, Kristie LE. Heatwaves and public health in Europe. Eur J Public Health. 2006;16(6):592–599. doi: 10.1093/eurpub/ckl049
  • Basu R, Samet JM. Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence. Epidemiol Rev. 2002;24(2):190–202. doi: 10.1093/epirev/mxf007
  • Naughton MP, Henderson A, Mirabelli MC, et al. Heat-related mortality during a 1999 heat wave in Chicago. Am J Prev Med. 2002;22(4):221–227. doi: 10.1016/S0749-3797(02)00421-X
  • Page LA, Hajat S, Kovats RS, et al. Temperature-related deaths in people with psychosis, dementia and substance misuse. Br J Psychiatry. 2012;200(6):485–490. doi: 10.1192/bjp.bp.111.100404
  • Cuddy ML. The effects of drugs on thermoregulation. AACN Clin Issues. 2004;15(2):238–253. doi: 10.1097/00044067-200404000-00010
  • Stollberger C, Lutz W, Finsterer J. Heat-related side-effects of neurological and non-neurological medication may increase heatwave fatalities. Eur J Neurol. 2009;16(7):879–882. doi: 10.1111/j.1468-1331.2009.02581.x
  • Harlan SL, Declet-Barreto JH, Stefanov WL, et al. Neighborhood effects on heat deaths: social and environmental predictors of vulnerability in Maricopa County, Arizona. Environ Health Perspect. 2013;121(2):197–204. doi: 10.1289/ehp.1104625
  • Reid CE, Mann JK, Alfasso R, et al. Evaluation of a heat vulnerability index on abnormally hot days: an environmental public health tracking study. Environ Health Perspect. 2012;120(5):715–720. doi: 10.1289/ehp.1103766
  • Davis RE, Knappenberger PC, Michaels PJ, et al. Changing heat-related mortality in the United States. Environ Health Perspect. 2003;111(14):1712–1718. doi: 10.1289/ehp.6336
  • Balling RC, Brazel SW. Time and space characteristics of the Phoenix urban heat island. J AZ-NV Acad Sci. 1987;21:75–81.
  • Harlan SL, Brazel AJ, Prashad L, et al. Neighborhood microclimates and vulnerability to heat stress. Soc Sci Med. 2006;63(2847–2863):2847–2863. doi: 10.1016/j.socscimed.2006.07.030
  • Hondula DM, Davis RE, Leisten MJ, et al. Fine-scale spatial variability of heat-related mortality in Philadelphia County, USA, from 1983-2008: a case-series analysis. Environ Health. 2012;11(1):16. doi: 10.1186/1476-069X-11-16
  • Oke T. The energetic basis of the urban heat island. Q J R Meteorol Soc. 1982;108(455):1–24. doi: 10.1002/qj.49710845502
  • Taylor J, Wilkinson P, Davies M, et al. Mapping the effects of urban heat island, housing, and age on excess heat-related mortality in London. Urban Clim. 2015;14(4):517–528. doi: 10.1016/j.uclim.2015.08.001
  • Harlan SL, Chowell G, Yang S, et al. Heat-related deaths in hot cities: estimates of human tolerance to high temperature thresholds. Int J Environ Res And Public Health. 2014;11(3):3304–3326. doi: 10.3390/ijerph110303304
  • Clarke JF. Some effects of the urban structure on heat mortality. Environ Res. 1972;5(1):93–104. doi: 10.1016/0013-9351(72)90023-0
  • McCarthy MP, Best MJ, Betts RA. Climate change in cities due to global warming and urban effects. Geophys Res Let. 2010;37(9):L09705. doi: 10.1029/2010GL042845
  • Li D, Bou-Zeid E. Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its part. J Appl Meteorol Climatol. 2013;52(9):2051–2064. doi: 10.1175/JAMC-D-13-02.1
  • Yang J, Zhao L, Oleson K. Large humidity effects on urban heat exposure and cooling challenges under climate change. Environ Res Lett. 2023;18(4):044024. doi: 10.1088/1748-9326/acc475
  • Coutts AM, Beringer J, Tapper NJ. Impact of increasing urban density on local climate: spatial and temporal variations in the surface energy balance in Melbourne, Australia. J Appl Meteorol Clim. 2007;46(4):477–493. doi: 10.1175/JAM2462.1
  • Santamouris M. On the energy impact of urban heat island and global warming on buildings. Energy Build. 2014;82:100–113. doi: 10.1016/j.enbuild.2014.07.022
  • Farahani AV, Jokisalo J, Korhonen N, et al. Overheating risk and energy demand of nordic old and new apartment buildings during average and extreme weather conditions under a changing climate. Appl Sci. 2021;11(9):3972. doi: 10.3390/app11093972
  • Oleson KW, Monaghan A, Wilhelmi O, et al. Interactions between urbanization, heat stress, and climate change. Climate Change. 2015;129(3–4):525–541. doi: 10.1007/s10584-013-0936-8
  • Smargiassi A, Goldberg MS, Plante C, et al. Variation of daily warm season mortality as a function of micro-urban heat islands. J Epidemiol Community Health. 2009;63(8):659–664. doi: 10.1136/jech.2008.078147
  • Conti S, Meli P, Minelli G, et al. Epidemiologic study of mortality during the Summer 2003 heat wave in Italy. Environ Res. 2005;98(3):390–399. doi: 10.1016/j.envres.2004.10.009
  • Hajat S, Vardoulakis S, Heaviside C, et al. Climate change effects on human health: projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s. J Epidemiol Community Health. 2014;68(7):641–648. doi: 10.1136/jech-2013-202449
  • Martinez BF, Annest JL, Kilbourne EM, et al. Geographic distribution of heat-related deaths among elderly persons. Use of county-level dot maps for injury surveillance and epidemiologic research. JAMA. 1989;262(16):2246–2250. doi: 10.1001/jama.1989.03430160068032
  • Rogot E, Sorlie PD, Backlund E. Air-conditioning and mortality in hot weather. Am J Epidemiol. 1992;136(1):106–116. doi: 10.1093/oxfordjournals.aje.a116413
  • Laaidi K, Zeghnoun A, Dousset B, et al. The impact of heat islands on mortality in Paris during the August 2003 heat wave. Environ Health Perspect. 2012;120(2):254–259. doi: 10.1289/ehp.1103532
  • Macintyre HL, Heaviside C, Taylor J, et al. Assessing urban population vulnerability and environmental risks across an urban area during heatwaves – Implications for health protection. Sci Total Environ. 2018;610-611:678–690. doi: 10.1016/j.scitotenv.2017.08.062
  • Vardoulakis S, Dear K, Wilkinson P. Challenges and opportunities for urban environmental health and sustainability: the HEALTHY-POLIS initiative. Environ Health. 2016;15(Suppl 1):30. doi: 10.1186/s12940-016-0096-1
  • Smoyer KE. Putting risk in its place: methodological considerations for investigating extreme event health risk. Soc Sci Med. 1998;47(11):1809–1824. doi: 10.1016/S0277-9536(98)00237-8
  • Hofman J, Shandas V, Pendleton N. The effects of historical housing policies on resident exposure to intra-urban heat: A study of 108 US urban areas. Climate. 2020;8(1):12. doi: 10.3390/cli8010012
  • Canoui-Poitrine F, Cadot E, Spira A, et al. Excess deaths during the August 2003 heat wave in Paris, France. Rev Epidemiol Sante Publique. 2006;54(2):127–135. doi: 10.1016/S0398-7620(06)76706-2
  • Yardley J, Sigal RJ, Kenny GP. Heat health planning: the importance of social and community factors. Global Environ Change. 2011;21(2):670–679. doi: 10.1016/j.gloenvcha.2010.11.010
  • Seino K, Nakamura K, Alemi S. Social interactions and heat stress mitigation among elderly people in a healthy city. Lancet Planet Health. 2024;8(Suppl 1):S12. doi: 10.1016/S2542-5196(24)00077-9
  • Huang G, Cadenasso ML. People, landscape, and urban heat island: dynamics among neighborhood social conditions, land cover and surface temperatures. Landsc Ecol Springer Netherlands. 2016;31(10):2507–2515. doi: 10.1007/s10980-016-0437-z
  • Akbari H, Cartalis C, Kolokotsa A, et al. Local climate change and urban heat island mitigation techniques – the state of the art. J Civil Eng Manage. 2016;22(2):1–16. doi: 10.3846/13923730.2015.1111934
  • Stone B Jr., Vargo J, Liu P, et al. Avoided heat-related mortality through climate adaptation strategies in three US cities. PLOS ONE. 2014;9(6):e100852. doi: 10.1371/journal.pone.0100852
  • Hart M, Sailor DJ. Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. J Theor Appl Clim. 2008;95(3–4):397–406. doi: 10.1007/s00704-008-0017-5
  • Akbari H, Levinson R, Rainer L. Monitoring the energy-use effects of cool roofs on California commercial buildings. Energy Build. 2005;37(10):1007–1016. doi: 10.1016/j.enbuild.2004.11.013
  • Jandaghian Z, Akbari H. Increasing urban albedo to reduce heat-related mortality in Toronto and Montreal, Canada. Energy Build. 2021;237:110697. doi: 10.1016/j.enbuild.2020.110697
  • Kalkstein LS. A new approach to evaluate the impact of climate on human mortality. Environ Health Perspect. 1999;96:145–150. doi: 10.1289/ehp.9196145
  • Kalkstein K, Sailor L, Shickman D, et al. Assessing the health impacts of urban heat island reduction strategies in the District of Columbia. Global Cool Cities Alliance; 2013. https://efaidnbmnnnibpcajpcglclefindmkaj/https://coolrooftoolkit.org/wp-content/uploads/2014/07/Three-City-Heat-Health-Report-FINAL.pdf
  • Iungman T, Cirach M, Marando F, et al. Cooling cities through urban green infrastructure: a health impact assessment of European cities. Lancet. 2023;401(10376):577–589. doi: 10.1016/S0140-6736(22)02585-5
  • Bowler DE, Buyung-Ali L, Knight TM, et al. Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landsc Urban Plan. 2010;97(3):147–155. doi: 10.1016/j.landurbplan.2010.05.006
  • Norton BA, Coutts AM, Livesley SJ, et al. Planning for cooler cities: a framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc Urban Plan. 2015;134:127–138. doi: 10.1016/j.landurbplan.2014.10.018
  • Aram F, Higueras Garcia E, Solgi E, et al. Urban green space cooling effect in cities. Heliyon. 2019;5(4):e01339. doi: 10.1016/j.heliyon.2019.e01339
  • Rotem-Mindali O, Michael Y, Helman D, et al. The role of local land-use on the urban heat island effect of Tel Aviv as assessed from satellite remote sensing. Appl Geogr. 2015;56:145–153. doi: 10.1016/j.apgeog.2014.11.023
  • Coutts AM, Harris R. A multi-scale assessment of urban heating in Melbourne during an extreme heat event and policy approaches for adaptation. Victorian Centre for Climate Change and Adaptation Research, Melbourne; 2013. https://watersensitivecities.org.au/content/vcccar-report-multi-scale-assessment-urban-heating-melbourne-extreme-heat-event-policy-approaches-adaptation/
  • Taleghani M, Kleerekoper L, Tenpierik M, et al. Outdoor thermal comfort within five different urban forms in the Netherlands. Build Environ. 2015;83:65–78. doi: 10.1016/j.buildenv.2014.03.014
  • Dimoudi A, Nikolopoulou M. Vegetation in the urban environment: Microclimatic analysis and benefits. Energy Build. 2003;35(1):69–76. doi: 10.1016/S0378-7788(02)00081-6
  • G-Y Q, H-Y L, Q-T Z, et al. Effects of evapotranspiration on mitigation of urban temperature by vegetation and urban agriculture. J Integ Agric. 2013;12(8):1307–1315. doi: 10.1016/S2095-3119(13)60543-2
  • Kurn DM, Bretz SE, Akbari H, et al. The Potential for Reducing Urban Air Temperatures and Energy Consumption Through Vegetative Cooling. 1982. https://www.osti.gov/servlets/purl/10180633
  • Spronken-Smith RA, Oke TR. The thermal regime of urban parks in two cities with different summer climates. Int J Remote Sens. 1998;19(11):2085–2104. doi: 10.1080/014311698214884
  • Lockwood JM, Wilkins BW, Halliwill JR. H1 receptor-mediated vasodilatation contributes to postexercise hypotension. J Physiol. 2005;563(Pt 2):633–642. doi: 10.1113/jphysiol.2004.080325
  • Spronken-Smith R, Oke T. Scale modelling of nocturnal cooling in urban parks. Bound-Lay Meteorol. 1999;93(2):287–312. doi: 10.1023/A:1002001408973
  • Owens TW, Carlson TN, Gillies RR. An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. Int J Remote Sens Environ. 1998;19(9):1663–1681. doi: 10.1080/014311698215171
  • Zuurbier M, van Loenhout JAF, le Grand A, et al. Street temperature and building characteristics as determinants of indoor heat exposure. Sci Total Environ. 2021;766:144376. doi: 10.1016/j.scitotenv.2020.144376
  • Giles-Corti B, Broomhall MH, Knuiman M, et al. Increasing walking: how important is distance to, attractiveness, and size of public open space? Am J Prev Med. 2005;28(2 Suppl 2):169–176. doi: 10.1016/j.amepre.2004.10.018
  • Coutts AM, Tapper NJ, Beringer J, et al. Watering our cities: The capacity for Water Sensitive Urban Design to support urban cooling and improve human thermal comfort in the Australian context. Prog Phys Geog. 2013;37(1):2–28. doi: 10.1177/0309133312461032
  • Akbari H, Menon S, Rosenfeld A. Global cooling: increasing world-wide urban albedos to offset CO2. Clim Change. 2009;13(1):28.
  • Cheela VRS, John M, Biswas W, et al. Combating urban heat island effect—a review of reflective pavements and tree shading strategies. Buildings. 2021;11(3):93. doi: 10.3390/buildings11030093
  • Rizwan AM, Dennis LY, Chunho LIU. A review on the generation, determination and mitigation of urban heat island. J Environ Sci. 2008;20(1):120–128. doi: 10.1016/S1001-0742(08)60019-4
  • Jandaghian Z, Berardi U. Comparing urban canopy models for microclimate simulations in weather research and forecasting models. Sustain Cities Soc. 2020;55:102–1025. doi: 10.1016/j.scs.2020.102025
  • Synnefa A, Santamouris M, Apostolakis K. On the development, optical properties and thermal performance of cool colored coatings for the urban environment. Sol Energy. 2007;81(4):488–497. doi: 10.1016/j.solener.2006.08.005
  • Santamouris M, Ding L, Fiorito F, et al. Passive and active cooling for the outdoor built environment – analysis and assessment of the cooling potential of mitigation technologies using performance data from 220 large scale projects. Sol Energy. 2017;154:14–33. doi: 10.1016/j.solener.2016.12.006
  • Santamouris M, Fiorito F. On the impact of modified urban albedo on ambient temperature and heat related mortality. Sol Energy. 2021;216:493–507. doi: 10.1016/j.solener.2021.01.031
  • Wong NH, Chen Y, Ong CL, et al. Investigation of thermal benefits of rooftop garden in the tropical environment. Build Envir. 2003;38(2):261–270. doi: 10.1016/S0360-1323(02)00066-5
  • He C, He L, Zhang Y, et al. Potential impacts of cool and green roofs on temperature-related mortality in the Greater Boston region. Environ Res Lett. 2020;15(9):094042. doi: 10.1088/1748-9326/aba4c9
  • Saiz S, Kennedy C, Bass B, et al. Comparative life cycle assessment of standard and green roofs. Environ Sci Technol. 2006;40(13):4312–4316. doi: 10.1021/es0517522
  • Dong J, Lin M, Zuo J, et al. Quantitative study on the cooling effect of green roofs in a high-density urban Area—A case study of Xiamen, China. J Clean Prod. 2020;255(10):120152. doi: 10.1016/j.jclepro.2020.120152
  • Tan H, Kotamarthi R, Wang J, et al. Impact of different roofing mitigation strategies on near-surface temperature and energy consumption over the Chicago metropolitan area during a heatwave event. Sci Total Environ. 2023;860:160508. doi: 10.1016/j.scitotenv.2022.160508
  • Jamei E, Chau HW, Seyedmahmoudian M, et al. Review on the cooling potential of green roofs in different climates. Sci Total Environ. 2021;791:148407. doi: 10.1016/j.scitotenv.2021.148407
  • Li D, Bou-Zeid E, Oppenheimer M. The effectiveness of cool and green roofs as urban heat island mitigation strategies. Environ Res Lett. 2014;9(5):055002. doi: 10.1088/1748-9326/9/5/055002
  • Phelan PE, Kaloush K, Miner M, et al. Urban heat island: mechanisms, implications, and possible remedies. Annu Rev Environ Resour. 2015;40(1):285–307. doi: 10.1146/annurev-environ-102014-021155
  • Centers for Disease Control and Prevention. Heat illness and deaths--New York City, 2000-2011. MMWR Morb Mortal Wkly Rep. 2013;62(31):617–621.
  • Spalt EW, Curl CL, Allen RW, et al. Erratum: time-location patterns of a diverse population of older adults: the Multi-Ethnic Study of atherosclerosis and air pollution (MESA air). J Expo Sci Environ Epidemiol. 2016;26(4):436. doi: 10.1038/jes.2016.13
  • Farrow A, Taylor H, Golding J. Time spent in the home by different family members. Environ Technol. 1997;18(6):605–613. doi: 10.1080/09593331808616578
  • van Loenhout JA, le Grand A, Duijm F, et al. The effect of high indoor temperatures on self-perceived health of elderly persons. Environ Res. 2016;146:27–34. doi: 10.1016/j.envres.2015.12.012
  • Wang Y, Liu Y, Song C, et al. Appropriate indoor operative temperature and bedding micro climate temperature that satisfies the requirements for sleep thermal comfort. Build Environ. 2015;92:20–29. doi: 10.1016/j.buildenv.2015.04.015
  • Hughes C, Sukumar N. Summer thermal comfort and overheating in the elderly. Build Serv Eng Res Technol. 2019;40(4):426–445. doi: 10.1177/0143624419844518
  • Rey G, Fouillet A, Bessemoulin P, et al. Heat exposure and socio-economic vulnerability as synergistic factors in heat-wave-related mortality. Eur J Epidemiol. 2009;24(9):495–502. doi: 10.1007/s10654-009-9374-3
  • Haines A, Kovats RS, Campbell-Lendrum D, et al. Climate change and human health: impacts, vulnerability, and mitigation. Lancet. 2006;367(9528):2101–2109. doi: 10.1016/S0140-6736(06)68933-2
  • World Health Organization. Housing and Health Guidelines. 2018; https://iris.who.int/bitstream/handle/10665/276001/9789241550376-eng.pdf
  • Loughnan M, Carroll M, Tapper NJ. The relationship between housing and heat wave resilience in older people. Int J Biometeorol. 2015;59(9):1291–1298. doi: 10.1007/s00484-014-0939-9
  • Hamza N, Gilroy R. The challenge to UK energy policy: an ageing population perspective on energy saving measures and consumption. Energy Policy. 2011;39(2):782–789. doi: 10.1016/j.enpol.2010.10.052
  • Campell M, McKeown D. Update on Extreme Heat and Maximum Indoor Temperature Standard for Multi-unit Residential Buildings. In: Toronto Public Health; 2015. https://www.toronto.ca/legdocs/mmis/2016/td/bgrd/backgroundfile-90418.pdf
  • Chen H, Wang J, Li Q, et al. Assessment of the effect of cold and hot temperatures on mortality in Ontario, Canada: a population-based study. CMAJ Open. 2016;4(1):E48–58. doi: 10.9778/cmajo.20150111
  • Meade RD, Akerman AP, Notley SR, et al. Effects of daylong exposure to Indoor Overheating on thermal and cardiovascular strain in older adults: a randomized crossover trial. Environ Health Perspect. 2024;132(2):27003. doi: 10.1289/EHP13159
  • Baborska-Narozny M, Stevenson F, Chatterton P. Temperture in housing: Stratification and contextual factors. Eng Sustainability. 2015;9:1–17. doi: 10.1680/jensu.14.00054
  • Ji Y, Fitton R, Swan W, et al. Assessing overheating of the UK existing dwellings – a case study of replica Victorian end terrace house. Build Environ. 2014;7:1–11. doi: 10.1016/j.buildenv.2014.03.012
  • Mavrogianni A, Davies M, Wilkinson P, et al. London housing and climate change: impact on comfort and health - preliminary results of a summer overheating study. Open House Int. 2010;35(2):49–59. doi: 10.1108/OHI-02-2010-B0007
  • Morgan C, Foster JA, Poston A, et al. Overheating in Scotland: contributing factors in occupied homes. Build Res Inf. 2017;45(1–2):143–156. doi: 10.1080/09613218.2017.1241472
  • Tillson AA, Oreszczyn T, Palmer J. Assessing impacts of summertime overheating: some adaptation strategies. Build Res Inf. 2013;41(6):652–661. doi: 10.1080/09613218.2013.808864
  • White-Newsome JL, Sanchez BN, Jolliet O, et al. Climate change and health: indoor heat exposure in vulnerable populations. Environ Res. 2012;112:20–27. doi: 10.1016/j.envres.2011.10.008
  • Smargiassi A, Fournier M, Griot C, et al. Prediction of the indoor temperatures of an urban area with an in-time regression mapping approach. J Expo Sci Environ Epidemiol. 2008;18(3):282–288. doi: 10.1038/sj.jes.7500588
  • Wright AJ, Young A, Natarajan S. Dwelling temperatures and comfort during the August 2003 heat wave. Build Serv Eng Res Technol. 2005;26(4):285–300. doi: 10.1191/0143624405bt136oa
  • Gul MS, Jenkins D, Patidar S, et al. Communicating future overheating risks to building design practitioners: using the low carbon futures tool. Build Serv Eng Res Technol. 2015;36(2):182–195. doi: 10.1177/0143624414566475
  • Taylor J, Davies M, Mavrogianni A, et al. Mapping indoor overheating and air pollution risk modification across Great Britain: a modelling study. Build Environ. 2016;99:1–12. doi: 10.1016/j.buildenv.2016.01.010
  • Oikonomou E, Davies M, Mavrogianni A, et al. Modelling the relative importance of the urban heat island and the thermal quality of dwellings for overheating in London. Build Environ. 2012;57:223–238. doi: 10.1016/j.buildenv.2012.04.002
  • Symonds P, Taylor J, Mavrogianni A, et al. Overheating in English dwellings: comparison modelled and monitored large-scale. Build Res Inf. 2017;45(1–2):195–208. doi: 10.1080/09613218.2016.1224675
  • Mirzaei PA, Haghighat F, Nakhaie AA, et al. Indoor thermal condition in urban heat island - Development of a predictive tool. Build Environ. 2012;57:7–17. doi: 10.1016/j.buildenv.2012.03.018
  • Sakka A, Santamouris M, Livada I, et al. On the thermal performance of low income housing during heat waves. Energy Build. 2012;49:69–77. doi: 10.1016/j.enbuild.2012.01.023
  • Pathan A, Mavrogianni A, Summerfield A, et al. Monitoring summer indoor overheating in the London housing stock. Energy Build. 2017;141:361–378. doi: 10.1016/j.enbuild.2017.02.049
  • Maivel M, Kurnitski J, Kalamees T. Field survey of overheating problems in Estonian apartment buildings. Archi Sci Rev. 2015;58(1):1–10. doi: 10.1080/00038628.2014.970610
  • McGill G, Sharpe T, Robertson L, et al. Meta-analysis of indoor temperatures in new-build housing. Build Res Inf. 2017;45(1–2):19–39. doi: 10.1080/09613218.2016.1226610
  • Mavrogianni A, Johnson F, Ucci M, et al. Historic variations in Winter indoor domestic temperatures and potential implications for body weight gain. Indoor Built Environ. 2013;22(2):360–375. doi: 10.1177/1420326X11425966
  • Arena L, Mantha P, Karagiozis A. Monitoring of internal moisture loads in residential buildings. SSRN Electron J. 2010. doi: 10.2139/ssrn.1761413
  • Roberts D, Lay K. Variability in measured space temperatures in 60 homes. United States; 2013. http://efaidnbmnnnibpcajpcglclefindmkaj/https://www.nrel.gov/docs/fy13osti/58059.pdf
  • Laouadi A, Bartko M, Gaur A, et al. Climate resilience buildings: guideline for management of overheating risk in residential buildings. National Research Council of Canada. Construction; 2021. https://nrc-publications.canada.ca/eng/view/object/?id=9c60dc19-ca18-4f4c-871f-2633f002b95c
  • Dahlblom MJ. Vertical temperature increase in multi-storey buildings. In NSB 2014: 10th Nordic Symposium on Building Physics; 5–19 June 2014; Lund, Sweden.
  • Paraschiv S, Paraschiv LS, Serban A. Increasing the energy efficiency of a building by thermal insulation to reduce the thermal load of the micro-combined cooling, heating and power system. Energy Rep. 2021;7:286–298. doi: 10.1016/j.egyr.2021.07.122
  • Rehm M, Cheung KS, Filippova O, et al. Stigma, risk perception and the remediation of leaky homes in New Zealand. New Zeal Econ Pap. 2020;54(1):89–105. doi: 10.1080/00779954.2019.1631878
  • Lomas KJ, Porritt SM. Overheating in buildings: lessons from research. Build Res Inf. 2017;45(1–2):1–18. doi: 10.1080/09613218.2017.1256136
  • Abdullah AK, Darsaleh A, Abdelbaqi S, et al. Thermal performance evaluation of window shutters for residential buildings: a case study of Abu Dhabi, UAE. Energies. 2022;15(16):5858. doi: 10.3390/en15165858
  • Taylor J, Wilkinson P, Picetti R, et al. Comparison of built environment adaptations to heat exposure and mortality during hot weather, West Midlands region, UK. Environ Int. 2018;111:287–294. doi: 10.1016/j.envint.2017.11.005
  • Haralambopoulos DA, Paparsenos GF. Assessing the thermal insulation of old buildings—the need for in situ spot measurements of thermal resistance and planar infrared thermography. Energy Conversion Manage. 1998;39(1–2):65–79. doi: 10.1016/S0196-8904(96)00176-8
  • Carbon Hub Z. Overheating in homes, the big picture, Full report. London; 2015.
  • Kestens Y, Brand A, Fournier M. Modelling the variation of land surface temperature as determinant of risk of heat-related health events. Int J Health Geogr. 2011;10(1):7. doi: 10.1186/1476-072X-10-7
  • Kilbourne EM, Choi K, Jones TS, et al. Risk factors for heatstroke. A case-control study. JAMA. 1982;247(24):3332–3336. doi: 10.1001/jama.1982.03320490030031
  • Uejio CK, Wilhelmi OV, Golden JS, et al. Intra-urban societal vulnerability to extreme heat: the role of heat exposure and the built environment, socioeconomics, and neighborhood stability. Health & Place. 2011;17(2):498–507. doi: 10.1016/j.healthplace.2010.12.005
  • Dengel A, Swainson M. Overheating in new homes: a review of the evidence. London: HS BRE Press on behalf of NHBC Foundation; 2012.
  • Barbosa R, Vicente R, Santos R. Climate change and thermal comfort in southern Europe housing: a case study from Lisbon. Build Environ. 2015;92:440–451. doi: 10.1016/j.buildenv.2015.05.019
  • Fosas D, Coley DA, Natarajan S, et al. Mitigation versus adaptation: does insulating dwellings increase overheating risk? Build Environ. 2018;143:740–759. doi: 10.1016/j.buildenv.2018.07.033
  • McLoed RS, Hopfe CJ, Kwan A. An investigation into future performance and overheating risks in Passivhaus dwellings. Build Environ. 2013;70(189–209):189–209. doi: 10.1016/j.buildenv.2013.08.024
  • Shrubsole C, MacMillan A, Davies M, et al. 100 unintended consequences of policies to improve the energy efficiency of the UK housing stock. Indoor Built Environ. 2014;23(3):340–352. doi: 10.1177/1420326X14524586
  • Tink V, Porritt S, Allinson D, et al. Measuring and mitigating overheating risk in solid wall dwellings retrofitted with internal wall insulation. Build Environ. 2018;141:247–261. doi: 10.1016/j.buildenv.2018.05.062
  • Kim Y, Gasparrini A, Hashizume M, et al. Heat-Related Mortality in Japan after the 2011 Fukushima Disaster: An Analysis of Potential Influence of Reduced Electricity Consumption. Environ Health Perspect. 2017;125(7):077005. doi: 10.1289/EHP493
  • Government of Canada. Keeping the Heat in. Natural Resources Canada. https://natural-resources.canada.ca/energy-efficiency/homes/make-your-home-more-energy-efficient/keeping-the-heat/15768
  • Birchmore R, Davies K, Etherington P, et al. Overheating in Auckland homes: testing and interventions in full-scale and simulated houses. Build Res Inf. 2017;45(1–2):157–175. doi: 10.1080/09613218.2017.1232857
  • Ong KS. Temperature reduction in attic and ceiling via insulation of several passive roof designs. Energy Conv Manag. 2011;52(6):2405–2411. doi: 10.1016/j.enconman.2010.12.044
  • Tariku F, Iffa E. Effect of attic insulation thickness and solar gain in a mild climate. Energy Procedia. 2015;78:67–72. doi: 10.1016/j.egypro.2015.11.116
  • Yang T, Clements-Croome DJ. Natural Ventilation in Built Environment. In: Meyers R, editor Encyclopedia of Sustainability Science and Technology. New York, NY: Springer New York; 2012. pp. 6865–6896.
  • Mourkos K, Rs M, Hopfe CJ, et al. Assessing the application and limitations of a standardised overheating risk-assessment methodology in a real-world context. Build Environ. 2020;181:107070. doi: 10.1016/j.buildenv.2020.107070
  • National Renewable Energy Laboratory. Cooling Your Home with Fans and Ventilation. Energy Efficiency and Renewable Energy Clearing house. Information and Outreach Program, US Department of Energy. 2001. http://efaidnbmnnnibpcajpcglclefindmkaj/https://www.nrel.gov/docs/fy01osti/29513.pdf
  • Peavy B. A model for predicting the thermal performance of ventilated attics. In: Summer Attic and Whole-House Ventilation. Proceedings of a workshop held on July 13, 1978. editor: Reppert MH, 1979; National Bureau of Standards Special Publication 548:119–149. https://www.govinfo.gov/content/pkg/GOVPUB-C13-bc8591331c75e4a6665b403679433827/pdf/GOVPUB-C13-bc8591331c75e4a6665b403679433827.pdf
  • Parker DS, Sonne JK, Sherwin JR, et al. Comparative evaluation of the impact of roofing systems on residential cooling energy demand in Florida. Paper presented at: Proceedings of the 2002 ACEEE Summer Study on Energy Efficiency in Buildings, 2002. https://www.fsec.ucf.edu/en/publications/pdf/fsec-cr-1220-00.pdf
  • Fan M, Fu Z, Wang J, et al. A review of different ventilation modes on thermal comfort, air quality and virus spread control. Build Environ. 2022;212:108831. doi: 10.1016/j.buildenv.2022.108831
  • Jensen CA, Cadorel X, Chu A Ventilation for reduced heat stress in apartments. Back to the Future: The Next 50 Years, 51st International Conference of the Architectural Science Association; 2017. pp. 615–624.
  • National Research Council. The National Building Code of Canada. 2020. https://nrc.canada.ca/en/certifications-evaluations-standards/codes-canada/codes-canada-publications/national-building-code-canada-2020
  • Akbari H, Kurn DM, Bretz SE, et al. Peak power and cooling energy savings of shade trees. Energy Build. 1997;25(2):139–148. doi: 10.1016/S0378-7788(96)01003-1
  • Heisler GM. Effects of individual trees on the solar radiation climate of small buildings. Urban Ecol. 1986;9(3):337–359. doi: 10.1016/0304-4009(86)90008-2
  • La Gennusa M, Nucara A, Pietrafesa M, et al. A model for managing and evaluating solar radiation for indoor thermal comfort. Sol Energy. 2007;81(5):594–606. doi: 10.1016/j.solener.2006.09.005
  • Li H. Chapter 13 - Impacts of Pavement Strategies on Human Thermal Comfort. In:Li H, editor Pavement Materials for Heat Island Mitigation. Boston: Butterworth-Heinemann; 2016. pp. 281–306.
  • Marino C, Nucara A, Pietrafesa M. Thermal comfort in indoor environment: effect of the solar radiation on the radiant temperature asymmetry. Sol Energy. 2017;144:295–309. doi: 10.1016/j.solener.2017.01.014
  • Freewan AAY. Impact of external shading devices on thermal and daylighting performance of offices in hot climate regions. Sol Energy. 2014;102:14–30. doi: 10.1016/j.solener.2014.01.009
  • Taylor J, Symonds P, Heaviside C, et al. Projecting the impacts of housing on temperature-related mortality in London during typical future years. Energy Build. 2021;249:111233. doi: 10.1016/j.enbuild.2021.111233
  • Mohammed A, Tariq MAUR, Ng AWM, et al. Reducing the cooling loads of buildings using shading devices: A case study in darwin. Sustainability. 2022;14(7):3775. doi: 10.3390/su14073775
  • US Department of Energy. Efficient Window Coverings. 2023; https://www.energy.gov/energysaver/energy-efficient-window-coverings
  • Rheault S, Bilgen E. Experimental study of full-size automated venetian blind windows. Sol Energy. 1990;44(3):157–160. doi: 10.1016/0038-092X(90)90079-R
  • Synnefa A, Dandou A, Santamouris M, et al. On the use of cool materials as a heat island mitigation strategy. J Appl Meteorol Clim. 2008;47(11):2846–2856. doi: 10.1175/2008JAMC1830.1
  • Bozonnet E, Doya M, Allard F. Cool roofs impact on building thermal response: a French case study. Energy Build. 2011;43(11):3006–3012. doi: 10.1016/j.enbuild.2011.07.017
  • Santamouris M, Synnefa MA, Kolokotsa D, et al. Passive cooling of the built environment—use of innovative reflective materials to fight heat island and decrease cooling needs. Int J Low Carbon. 2008;3(2):71–82. doi: 10.1093/ijlct/3.2.71
  • Bretz S, Akbari H. Long-term performance of high albedo roof coatings. Building Envir. 1997;25(2):159–167. doi: 10.1016/S0378-7788(96)01005-5
  • Simpson JR, McPherson EG. The effects of roof albedo modification on cooling loads of scale model residences in Tucson, Arizona. Energy Build. 1997;25(2):127–137. doi: 10.1016/S0378-7788(96)01002-X
  • Rawat M, Singh RN. A study on the comparative review of cool roof thermal performance in various regions. Energy Built Environ. 2022;3(3):327–347. doi: 10.1016/j.enbenv.2021.03.001
  • Akbari H. Shade trees reduce building energy use and CO2 emissions from power plants. Environ Pollut. 2002;116:S119–S126. doi: 10.1016/S0269-7491(01)00264-0
  • Sen S, Khazanovich L. Limited application of reflective surfaces can mitigate urban heat pollution. Nat Commun. 2021;12(1):3491. doi: 10.1038/s41467-021-23634-7
  • Mandal J, Fu Y, Overvig AC, et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science. 2018;362(6412):315–319. doi: 10.1126/science.aat9513
  • Jay O, Capon A, Berry P, et al. Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities. Lancet. 2021;398(10301):709–724. doi: 10.1016/S0140-6736(21)01209-5
  • Richard L, Kosatsky T, Renouf A. Correlates of hot day air-conditioning use among middle-aged and older adults with chronic heart and lung diseases: the role of health beliefs and cues to action. Health Educ Res. 2011;26(1):77–88. doi: 10.1093/her/cyq072
  • McGeehin MA, Mirabelli M. The potential impacts of climate variability and change on temperature-related morbidity and mortality in the United States. Environ Health Perspect. 2001;109(Suppl 2):185–189. doi: 10.1289/ehp.109-1240665
  • Brucker G. Vulnerable populations: lessons learnt from the summer 2003 heat waves in Europe. Euro Surveill. 2005;10(7):147. doi: 10.2807/esm.10.07.00551-en
  • Gronlund CJ. Racial and socioeconomic disparities in heat-related health effects and their mechanisms: a review. Curr Epidemiol Rep. 2014;1(3):165–173. doi: 10.1007/s40471-014-0014-4
  • World Health Organization. Public health advice on preventing health effects to heat. Regional Office for Europe; 2011. https://www.who.int/publications/i/item/WHO-EURO-2011-2510-42266-58691
  • Government of Canada. Extreme heat: heat waves. Health Canada; 2019. https://www.canada.ca/en/health-canada/services/climate-change-health/extreme-heat.html
  • Gupta S, Carmichael C, Simpson C, et al. Electric fans for reducing adverse health impacts in heatwaves. Cochrane Database Of Systematic Reviews. 2012;7(7):CD009888. doi: 10.1002/14651858.CD009888.pub2
  • World Health Organization. Heat and health in the WHO European Region: updated evidence for effective prevention. In: Copenhagen: WHO Regional Office for Europe Copenhagen; 2021. https://www.who.int/europe/publications/i/item/9789289055406
  • Morris NB, Chaseling GK, English T, et al. Electric fan use for cooling during hot weather: a biophysical modelling study. Lancet Planet Health. 2021;5(6):e368–e377. doi: 10.1016/S2542-5196(21)00136-4
  • Meade RD, Notley SR, Kirby NV, et al. A critical review of the effectiveness of electric fans as a personal cooling intervention in hot weather and heatwaves. Lancet Planet Health. 2024;8(4):e256–e269. doi: 10.1016/S2542-5196(24)00030-5
  • Gagnon D, Romero SA, Cramer MN, et al. Age modulates physiological responses during Fan Use under extreme heat and humidity. Medicine And Science In Sports And Exercise. 2017;49(11):2333–2342. doi: 10.1249/MSS.0000000000001348
  • Ravanelli NM, Hodder SG, Havenith G, et al. Heart rate and body temperature responses to extreme heat and humidity with and without electric fans. JAMA. 2015;313(7):724–725. doi: 10.1001/jama.2015.153
  • Schmidt MD, Notley SR, Meade RD, et al. Revisiting regional variation in the age-related reduction in sweat rate during passive heat stress. Physiol Rep. 2022;10(7):e15250. doi: 10.14814/phy2.15250
  • Morris NB, English T, Hospers L, et al. The effects of electric fan use under differing resting heat index conditions: a clinical trial. Ann Intern Med. 2019;171(9):675–677. doi: 10.7326/M19-0512
  • Gagnon D, Crandall CG. Electric fan use during heat waves: turn off for the elderly? Temperature. 2017;4(2):104–106. doi: 10.1080/23328940.2017.1295833
  • Gagnon D, Romero SA, Cramer MN, et al. Cardiac and thermal strain of elderly adults exposed to extreme heat and humidity with and without electric fan use. JAMA. 2016;316(9):989–991. doi: 10.1001/jama.2016.10550
  • Black-Ingersoll F, de Lange J, Heidari L, et al. A Literature Review of Cooling Center, Misting Station, Cool Pavement, and Cool Roof Intervention Evaluations. Atmosphere. 2022;13(7):1103. doi: 10.3390/atmos13071103
  • Farnham C. Quantifying the over-estimation of the perceived cooling from a mist Fan. Envir Sci Eng. 2018;IS-2:5–8.
  • Farnham C, Yuan J. Possible perception bias in the thermal evaluation of evaporation cooling with a Misting Fan. Clean Technol. 2021;3(1):183–205. doi: 10.3390/cleantechnol3010011
  • Farnham C, Emura K, Mizuno T. Evaluation of cooling effects: outdoor water mist fan. Build Res Inf. 2015;43(3):334–345. doi: 10.1080/09613218.2015.1004844
  • Ulpiani G, di Perna C, Zinzi M. Mist cooling in urban spaces: understanding the key factors behind the mitigation potential. Appl Therm Eng. 2020;178:115644. doi: 10.1016/j.applthermaleng.2020.115644
  • Zheng K, Yuan C, Wong NH, et al. Dry mist systems and its impact on thermal comfort for the tropics. Sustain Cities Soc. 2019;51:101727. doi: 10.1016/j.scs.2019.101727
  • Desert A, Naboni E, Garcia D. The spatial comfort and thermal delight of outdoor misting installations in hot and humid extreme environments. Energy Build. 2020;224:110202. doi: 10.1016/j.enbuild.2020.110202
  • Vanos JK, Wright MK, Kaiser A, et al. Evaporative misters for urban cooling and comfort: effectiveness and motivations for use. Int J Biometeorol. 2022;66(2):357–369. doi: 10.1007/s00484-020-02056-y
  • Selkirk GA, Tm M, Wong J. Active versus passive cooling during work in warm environments while wearing firefighting protective clothing. J Occup Environ Hyg. 2004;1(8):521–531. doi: 10.1080/15459620490475216
  • Belarbi R, Ghiaus C, Allard F. Modeling of water spray evaporation: application to passive cooling of buildings. Sol Energy. 2006;80(12):1540–1552. doi: 10.1016/j.solener.2006.01.004
  • Semenza JC, Hall DE, Wilson DJ, et al. Public perception of climate change voluntary mitigation and barriers to behavior change. Am J Prev Med. 2008;35(5):479–487. doi: 10.1016/j.amepre.2008.08.020
  • Lynch GP, Périard JD, Pluim BM, et al. Optimal cooling strategies for players in Australian Tennis Open conditions. J Sci Med Sport. 2018;21(3):232–237. doi: 10.1016/j.jsams.2017.05.017
  • Schranner D, Scherer L, Lynch GP, et al. In-play cooling interventions for simulated match-play tennis in Hot/Humid conditions. Medicine and science In sports and exercise. 2017;49(5):991–998. doi: 10.1249/MSS.0000000000001183
  • Cuddy JS, Hailes WS, Ruby BC. A reduced core to skin temperature gradient, not a critical core temperature, affects aerobic capacity in the heat. J Thermal Biol. 2014;43:7–12. doi: 10.1016/j.jtherbio.2014.04.002
  • Ely BR, Ely MR, Cheuvront SN, et al. Evidence against a 40 degrees C core temperature threshold for fatigue in humans. J Appl Physiol. 2009;107(5):1519–1525. doi: 10.1152/japplphysiol.00577.2009
  • DeGroot DW, Gallimore RP, Thompson SM, et al. Extremity cooling for heat stress mitigation in military and occupational settings. J Thermal Biol. 2013;38(6):305–310. doi: 10.1016/j.jtherbio.2013.03.010
  • House JR. Extremity cooling as a method for reducing heat strain. J Def Sci. 1998;3(1):108–114.
  • House JR, Holmes C, Allsopp AJ. Prevention of heat strain by immersing the hands and forearms in water. J R Nav Med Serv. 1997;83(1):26–30. doi: 10.1136/jrnms-83-26
  • Livingstone SD, Nolan RW, Cattroll SW. Heat loss caused by immersing the hands in water. Aviat Space Environ Med. 1989;60(12):1166–1171.
  • Livingstone SD, Nolan RW, Keefe AA. Heat loss caused by cooling the feet. Aviat Space Environ Med. 1995;66(3):232–237.
  • Allsopp AJ, Poole KA. The effect of hand immersion on body temperature when wearing impermeable clothing. J R Nav Med Serv. 1991;77(1):41–47. doi: 10.1136/jrnms-77-41
  • Giesbrecht GG, Jamieson C, Cahill F. Cooling hyperthermic firefighters by immersing forearms and hands in 10 degrees C and 20 degrees C water. Aviat Space Environ Med. 2007;78(6):561–567.
  • Meade RD, Er M, Jj M, et al. Body Core Temperature After Foot Immersion and Neck Cooling in Older Adults Exposed to Extreme Heat. JAMA. 2024;331(3):253–256. doi: 10.1001/jama.2023.24417
  • Sathaye JA, Dale LL, Larsen PH, et al. Estimating impacts of warming temperatures on California’s electricity system. Glob Environ Change. 2013;23(2):499–511. doi: 10.1016/j.gloenvcha.2012.12.005
  • Wang Z, Hong T, Li H. Informing the planning of rotating power outages in heat waves through data analytics of connected smart thermostats for residential buildings. Environ Res Lett. 2021;16(7):074003. doi: 10.1088/1748-9326/ac092f
  • Morris NB, Gruss F, Lempert S, et al. A preliminary study of the effect of dousing and Foot Immersion on Cardiovascular and thermal responses to extreme heat. JAMA. 2019;322(14):1411–1413. doi: 10.1001/jama.2019.13051
  • Cramer MN, Huang M, Moralez G, et al. Keeping older individuals cool in hot and moderately humid conditions: wetted clothing with and without an electric fan. J Appl Physiol. 2020;128(3):604–611. doi: 10.1152/japplphysiol.00786.2019
  • Szlyk CP, Sils FR IV, Hubbard RW, et al. Effects of water temperature and flavoring on voluntary dehydration in men. Physiol Behav. 1989;45(3):639–647. doi: 10.1016/0031-9384(89)90085-1
  • Naito T, Iribe Y, Ogaki T. Ice ingestion with a long rest interval increases the endurance exercise capacity and reduces the core temperature in the heat. J Physiol Anthropo. 2017;36(1):9. doi: 10.1186/s40101-016-0122-6
  • Siegel R, Maté J, Brearley MB, et al. Ice slurry ingestion increases core temperature capacity and running time in the heat. Medicine And Science In Sports And Exercise. 2010;42(4):717–725. doi: 10.1249/MSS.0b013e3181bf257a
  • Moore A, Pritchett KL, Pritchett RC, et al. Effects of pre-exercise ice slurry ingestion on physiological and perceptual measures in athletes with spinal cord injuries. Int J Exerc Sci. 2021;14(2):19–32.
  • Morris N, C G, O J. Ice slurry ingestion leads to a lower net heat loss during exercise in the heat. Med Sci Sports Exerc. 2016;48(1):114–122. doi: 10.1249/MSS.0000000000000746
  • Lamarche DT, Meade RD, McGinn R, et al. Temperature of ingested water during exercise does not affect body heat storage. Med Sci Sports Exerc. 2015;47(6):1272–1280. doi: 10.1249/MSS.0000000000000533
  • Morris NB, Bain AR, Cramer MN, et al. Evidence that transient changes in sudomotor output with cold and warm fluid ingestion are independently modulated by abdominal, but not oral thermoreceptors. J Appl Physiol. 2014;116(8):1088–1095. doi: 10.1152/japplphysiol.01059.2013
  • Jay O, Morris NB. Does Cold Water or Ice Slurry Ingestion During Exercise Elicit a Net Body Cooling Effect in the Heat? Sports Med. 2018;48(Suppl 1):17–29. doi: 10.1007/s40279-017-0842-8
  • Naito T, Sagayama H, Akazawa N, et al. Ice slurry ingestion during break times attenuates the increase of core temperature in a simulation of physical demand of match-play tennis in the heat. Temperature. 2018;5(4):371–379. doi: 10.1080/23328940.2018.1475989
  • Thirumagal K, Gayathri R, Vishnu P. Awareness of dental pain and sensitivity among elderly women – a survey. Drug Invention Today. 2020;14(7):1027–1030.
  • Chebini A, Dilli E. Cold stimulus headache. Curr Neurol Neurosci Rep. 2019;19(7):46. doi: 10.1007/s11910-019-0956-5
  • Wollner L, Kollins KJ. Disorders of the autonomic nervous system. In: brocklehurst J, Tallis R Fillit H, editors. Textbook of geriatric medicine and gerontology. Edinburgh: Churchill Livingstone; 1992. p. 399–403.
  • Khamnei S, Hosseinlou A, Zamanlu M. Water temperature, voluntary drinking and fluid balance in dehydrated taekwondo athletes. J Sci Med Sport. 2011;10(4):718–724.
  • Rodrigues P, Orssatto LBR, Gagnon D, et al. Passive heat therapy: a promising preventive measure for people at risk of adverse health outcomes during heat extremes. J Appl Physiol. 2024;136(4):677–694. doi: 10.1152/japplphysiol.00701.2023
  • Janetos K-M, O’Connor FC, Koetje NJ, et al. Heat acclimation by warm-water immersion enhances whole-body heat loss in older adults. American College of Sports Medicine Annual Meeting, Boston, Massachusetts, USA. May 28-May 31, 2024.
  • Anderson BG, Bell ML. Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States. Epidemiology. 2009;20(2):205–213. doi: 10.1097/EDE.0b013e318190ee08
  • Ito K, Lane K, Olson C. Equitable access to air conditioning: a city health department’s perspective on preventing heat-related Deaths. Epidemiology. 2018;29(6):749–752. doi: 10.1097/EDE.0000000000000912
  • Ostro B, Rauch S, Green R, et al. The effects of temperature and use of air conditioning on hospitalizations. Am J Epidemiol. 2010;172(9):1053–1061. doi: 10.1093/aje/kwq231
  • Sera F, Hashizume M, Honda Y, et al. Air Conditioning and Heat-related Mortality: A Multi-country Longitudinal Study. Epidemiology. 2020;31(6):779–787. doi: 10.1097/EDE.0000000000001241
  • Statistics Canada. The Prevalence of Household Air Conditioning in Canada. 2023. https://www150.statcan.gc.ca/n1/pub/82-003-x/2023007/article/00002-eng.htm
  • Randazzo T, De Cian E, Mistry MN. Air conditioning and electricity expenditure: the role of climate in temperate countries. Econ Model. 2020;90:273–287. doi: 10.1016/j.econmod.2020.05.001
  • Pavanello F, De Cian E, Davide M, et al. Air-conditioning and the adaptation cooling deficit in emerging economies. Nat Commun. 2021;12(1):6460. doi: 10.1038/s41467-021-26592-2
  • Notley SR, Meade RD, Akerman AP, et al. Evidence for age-related differences in heat acclimatisation responsiveness. Exp Physiol. 2020;105(9):1491–1499. doi: 10.1113/EP088728
  • World Health Organization. Health impact of low indoor temperatures: Report on a WHO meeting: Copenhagen, 11-14 November 1985. World Health Organization Regional Office for Europe; 1987.
  • Widerynski S, Schramm P, Conlon K, et al. The Use of Cooling Centers to Prevent Heat-Related Illness: Summary of Evidence and Strategies for Implementation. Climate and Health.Technical Report Series Climate and Health Program, Centers for Disease Control and Prevention. 2017. http://efaidnbmnnnibpcajpcglclefindmkaj/https://www.cdc.gov/climateandhealth/docs/UseOfCoolingCenters.pdf
  • Bassil KL, Cole DC. Effectiveness of public health interventions in reducing morbidity and mortality during heat episodes: a structured review. Int J Environ Res And Public Health. 2010;7(3):991–1001. doi: 10.3390/ijerph7030991
  • Meade RD, Notley SR, Akerman AP, et al. Efficacy of cooling centers for mitigating physiological strain in older adults during daylong heat exposure: a laboratory-based heat wave simulation. Environ Health Perspect. 2023;131(6):67003. doi: 10.1289/EHP11651
  • McGarr GW, Meade RD, Kenny GP. Indoor overheating influences self-reported symptoms and mood-state in older adults during a simulated heatwave: effects of mid-day cooling centre use. Physiol Behav. 2023;271:114335. doi: 10.1016/j.physbeh.2023.114335
  • Bekö G, Toftum J, Clausen G. Modeling ventilation rates in bedrooms based on building characteristics and occupant behavior. Build Environ. 2011;46(11):2230–2237. doi: 10.1016/j.buildenv.2011.05.002
  • Center for Disease Control and Prevention. Heat and older adults. Natural Disasters and Severe Weather. 2024. https://www.cdc.gov/disasters/extremeheat/older-adults-heat.html