847
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Predicting discharge coefficient of triangular side orifice using ANN and GEP models

ORCID Icon & ORCID Icon
Pages 1-20 | Received 14 Oct 2023, Accepted 27 Nov 2023, Published online: 19 Dec 2023

References

  • Ayaz, M., & Mansoor, T. (2018). Discharge coefficient of oblique sharp crested weir for free and submerged flow using trained ANN model. Water Science, 32(2), 192–212. doi:10.1016/j.wsj.2018.10.002
  • Azamathulla, H. M., & Jarrett, R. D. (2013). Use of gene-expression programming to estimate manning’s roughness coefficient for high gradient streams. Water Resource Management, 27(3), 715–729. doi:10.1007/s11269-012-0211-1
  • Azimi, H., Bonakdari, H., & Ebtehaj, I. (2017). A highly efficient gene expression programming model for predicting the discharge coefficient in a side Weir along a trapezoidal Canal. Irrigation Drain, 66(4), 655–666. doi:10.1002/ird.2127
  • Azimi, H., Shabanlou, S., Ebtehaj, I., Bonakdari, H., & Kardar, S. (2017). Combination of computational fluid dynamics, adaptive neuro-fuzzy inference System, and genetic algorithm for predicting discharge coefficient of rectangular side orifices. Journal of Irrigation & Drainage Engineering, 143(7), 4017015. doi:10.1061/(ASCE)IR.1943-4774.0001190
  • Beale, M. H., Hagan, M. T., & Demuth, H. B. (2010). Neural network toolbox. User’s Guide MathWorks, 2, 77–81.
  • Bilhan, O., Emiroglu, M. E., & Kisi, O. (2011). Use of artificial neural networks for prediction of discharge coefficient of triangular labyrinth side weir in curved channels. Advances in Engineering Software, 42(4), 208–214. doi:10.1016/j.advengsoft.2011.02.006
  • Bonakdari, H., Zaji, A. H., Shamshirband, S., Hashim, R., & Petkovic, D. (2015). Sensitivity analysis of the discharge coefficient of a modified triangular side weir by adaptive neuro-fuzzy methodology. Measurement, 73, 74–81. doi:10.1016/j.measurement.2015.05.021
  • Borghei, S. M., Vatannia, Z., Ghodsian, M., & Jalili, M. R. (2003). Oblique rectangular sharp-crested weir. Proceedings of the Institution of Civil Engineers: Water Maritime Engineering, 156(2), 185–191. doi:10.1680/wame.2003.156.2.185
  • Browne, N. P. A., & dos Santos, M. V. (2010). Adaptive representations for improving evolvability, parameter control, and parallelization of gene expression programming. Applied Computational Intelligence and Soft Computing, 2010, 1–19. doi:10.1155/2010/409045
  • Dutta, D., Mandal, A., & Afzal, M. S. (2020). Discharge performance of plan view of multi-cycle W-form and circular arc labyrinth weir using machine learning. Flow Measurement and Instrumentation, 73, 101740. doi:10.1016/j.flowmeasinst.2020.101740
  • Ebtehaj, I., Bonakdari, H., Khoshbin, F., & Azimi, H. (2015a). Pareto genetic design of group method of data handling type neural network for prediction discharge coefficient in rectangular side orifices. Flow Measurement and Instrumentation, 41, 67–74. doi:10.1016/j.flowmeasinst.2014.10.016
  • Ebtehaj, I., Bonakdari, H., Zaji, A. H., Azimi, H., & Sharifi, A. (2015). Gene expression programming to predict the discharge coefficient in rectangular side weirs. Applied Soft Computing, 35, 618–628. doi:10.1016/j.asoc.2015.07.003
  • Eghbalzadeh, A., Javan, M., Hayati, M., & Amini, A. (2016). Discharge prediction of circular and rectangular side orifices using artificial neural networks. KSCE Journal of Civil Engineering, 20(2), 990–996. doi:10.1007/s12205-015-0440-y
  • Elshaarawy, M., Hamed, A. K., & Hamed, S. (2023). Regression-based models for predicting discharge coefficient of triangular side orifice. Journal of Engineering Research, 7(5), 224–231. doi:10.21608/erjeng.2023.244750.1292
  • Eltarabily, M.G., Abd-Elhamid, H.F., Zeleňáková, M., Elshaarawy, M.K., Elkiki, M. & Selim, T. (2023). Predicting seepage losses from lined irrigation canals using machine learning models. Frontiers in Water, 5, 1287357. doi: 10.3389/frwa.2023.1287357
  • Eltarabily, M.G., Elshaarawy, M.K. (2023). Risk Assessment of Potential Groundwater Contamination by Agricultural Drainage Water in the Central Valley Watershed, California, USA. In: The Handbook of Environmental Chemistry. Springer, Berlin, Heidelberg. doi:10.1007/698_2023_1051
  • Eltarabily, M. G., Elshaarawy, M. K., Elkiki, M., & Selim, T. (2023a). CFD and ANN for modeling lined irrigation canals with low-density polyethylene and cement concrete liners. Irrigation and Drainage doi:10.1002/ird.2911
  • Eltarabily, M. G., Elshaarawy, M. K., Elkiki, M., & Selim, T. (2023b). Modeling surface water and groundwater interactions for seepage losses estimation from unlined and lined canals. Water Science, 37(1), 315–328. doi:10.1080/23570008.2023.2248734
  • Emiroglu, M. E., Bilhan, O., & Kisi, O. (2011). Neural networks for estimation of discharge capacity of triangular labyrinth side-weir located on a straight channel. Expert Systems with Applications, 38(1), 867–874. doi:10.1016/j.eswa.2010.07.058
  • Ferreira, C. (2006). Gene expression programming, studies in computational intelligence. Berlin Heidelberg: Springer. doi:10.1007/3-540-32849-1
  • Ferreira, C. (2010). What is gep? from genexprotools tutorials-a gepsoft web resource. https://www.gepsoft.com/tutorial002.htm.
  • Flood, I., & Kartam, N. (1994). Neural networks in Civil Engineering. II: Systems and application. Journal of Computing in Civil Engineering, 8(2), 149–162. doi:10.1061/(asce)0887-3801(1994)8:2(149)
  • Gill, M. A. (1987). Flow through side slots. Journal of Environmental Engineering, 113(5), 1047–1057. doi:10.1061/(ASCE)0733-9372(1987)113:5(1047)
  • Guo, J. C. Y., & Stitt, R. P. (2017). Flow through partially submerged orifice. Journal of Irrigation & Drainage Engineering, 143(8), 6017006. doi:10.1061/(ASCE)IR.1943-4774.0001192
  • Hagan, M. T., & Menhaj, M. (1994). Training feed-forward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks / a Publication of the IEEE Neural Networks Council, 5(6), 989–993. doi:10.1109/72.329697
  • Hassan, M., Zaffar, H., Mehmood, I., & Khitab, A. (2018). Development of streamflow prediction models for a weir using ANN and step-wise regression. Modeling Earth Systems and Environment, 4(3), 1021–1028. doi:10.1007/s40808-018-0500-7
  • Haykin, S. (2009). Neural networks and learning machines (Third Ed.). Hamilton: Pearson Education, Inc., McMaster University.
  • Hussain, A., Ahmad, Z., & Asawa, G. L. (2010). Discharge characteristics of sharp-crested circular side orifices in open channels. Flow Measurement and Instrumentation, 21(3), 418–424. doi:10.1016/j.flowmeasinst.2010.06.005
  • Hussain, A., Ahmad, Z., & Asawa, G. L. (2011). Flow through sharp-crested rectangular side orifices under free flow condition in open channels. Agricultural Water Management, 98(10), 1536–1544. doi:10.1016/j.agwat.2011.05.004
  • Hussain, A., Ahmad, Z., & Ojha, C. S. P. (2014). Analysis of flow through lateral rectangular orifices in open channels. Flow Measurement and Instrumentation, 36, 32–35. doi:10.1016/j.flowmeasinst.2014.02.002
  • Hussain, A., Ahmad, Z., & Ojha, C. S. P. (2016). Flow through lateral circular orifice under free and submerged flow conditions. Flow Measurement and Instrumentation, 52, 57–66. doi:10.1016/j.flowmeasinst.2016.09.007
  • Khosravinia, P., Nikpour, M. R., Kisi, O., & Adnan, R. M. (2023). Predicting discharge coefficient of triangular side orifice using LSSVM optimized by gravity search algorithm. Water, 15(7), 1341. Water 15, 1341. doi:10.3390/w15071341
  • Koza, J. R., Bennett, F. H., Andre, D., & Keane, M. A. (1999). Genetic programming III: Darwinian invention and problem solving [book review]. IEEE Transactions on Evolutionary Computation, 3(3), 251–253. doi:10.1109/TEVC.1999.788530
  • Masoud, G. (2003). Flow through side Sluice Gate. Journal of Irrigation & Drainage Engineering, 129(6), 458–463. doi:10.1061/(ASCE)0733-9437(2003)129:6(458)
  • Parsaie, A. (2016). Predictive modeling the side weir discharge coefficient using neural network. Modeling Earth Systems and Environment, 2(2), 63. doi:10.1007/s40808-016-0123-9
  • Parsaie, A., & Haghiabi, A. H. (2017). Improving modelling of discharge coefficient of triangular labyrinth lateral weirs using SVM, GMDH and MARS techniques. Irrigation and Drainage, 66(4), 636–654. doi:10.1002/ird.2125
  • Parvaneh, A., Kabiri-Samani, A., & Nekooie, M. A. (2016). Discharge coefficient of triangular and asymmetric labyrinth side weirs using the nonlinear PLS method. Journal of Irrigation & Drainage Engineering, 142(11), 6016010. doi:10.1061/(ASCE)IR.1943-4774.0001081
  • Ramamurthy, A. S., Tim, U. S., & Rao, M. V. J. (1987). Weir‐orifice units for uniform flow distribution. Journal of Environmental Engineering, 113(1), 155–166. doi:10.1061/(ASCE)0733-9372(1987)113:1(155)
  • Ramamurthy, A. S., Tim, U. S., & Sarraf, S. (1986). Rectangular lateral orifices in open channels. Journal of Environmental Engineering, 112(2), 292–300. doi:10.1061/(ASCE)0733-9372(1986)112:2(292)
  • Roushangar, K., Khoshkanar, R., & Shiri, J. (2016). Predicting trapezoidal and rectangular side weirs discharge coefficient using machine learning methods. ISH Journal of Hydraulic Engineering, 22(3), 254–261. doi:10.1080/09715010.2016.1177740
  • Selim, T., Kamal, A., Mohamed, H., & Eltarabily, M. G. (2023). Numerical investigation of flow characteristics and energy dissipation over piano key and trapezoidal labyrinth weirs under free ‑ flow conditions. Modeling Earth Systems and Environment. doi:10.1007/s40808-023-01844-w
  • Vatankhah, A. R., & Bijankhan, M. (2013). Discussion of “New method for modeling thin-walled orifice flow under partially submerged conditions” by David Brandes and William T. Barlow. Journal of Irrigation and Drainage Engineering, 139(9), 789–793 doi:10.1061/(ASCE)IR.1943-4774.0000584.
  • Vatankhah, A. R., & Mirnia, S. H. (2018). Predicting discharge coefficient of triangular side orifice under free flow conditions. Journal of Irrigation & Drainage Engineering, 144(10), 144. doi:10.1061/(asce)ir.1943-4774.0001343
  • Zaji, A. H., & Bonakdari, H. (2014). Performance evaluation of two different neural network and particle swarm optimization methods for prediction of discharge capacity of modified triangular side weirs. Flow Measurement and Instrumentation, 40, 149–156. doi:10.1016/j.flowmeasinst.2014.10.002