1,614
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Fluvio-geomorphic change of the Padma-Meghna river course using the NDWI and MNDWI techniques

ORCID Icon, ORCID Icon & ORCID Icon
Pages 293-310 | Received 17 Jan 2024, Accepted 14 Apr 2024, Published online: 27 Apr 2024

References

  • Acharya, T. D., Subedi, A., Huang, H., & Lee, D. H. (2019). Application of water indices in surface water change detection using landsat imagery in Nepal. Sensors and Materials, 31(5), 1429. doi:10.18494/sam.2019.2264
  • Alam, G. M. M. (2017). Livelihood cycle and vulnerability of rural households to climate change and hazards in Bangladesh. Environmental Management, 59(5), 777–791. doi:10.1007/s00267-017-0826-3
  • Alam, M. M. (1991). Some distinctive aspects of braiding and anastomosing with reference to the Jamuna and Meghna rivers in Bangladesh. Journal of Bangladesh Academy of Sciences, 15, 113–121.
  • Alam, M. S., & Singh, A. (2021). Planform dynamics of kankai river using GIS and remote sensing. Journal of Water Engineering and Management, 2(2), 48–60. doi:10.47884/jweam.v2i2pp48-60
  • Arefin, R., Meshram, S. G., & Seker, D. Z. (2021). River channel migration and land-use/land-cover change for Padma river at Bangladesh: A RS- and GIS-based approach. International Journal of Environmental Science and Technology, 18(10), 3109–3126. doi:10.1007/s13762-020-03063-7
  • Bangladesh Water Development Board (BWDB). (2020). Analysis of water level along the Brahmaputra-Jamuna, Ganga-Padma & Surma-Meghna river system. http://www.hydrology.bwdb.gov.bd/img_upload/ongoing_project/757.pdf
  • Chowdary, V., Chandran, R. V., Neeti, N., Bothale, R., Srivastava, Y., & Singh, R. (2008). Assessment of surface and sub-surface waterlogged areas in irrigation command areas of Bihar state using remote sensing and GIS. Agricultural Water Management, 95(7), 754–766. doi:10.1016/j.agwat.2008.02.009
  • Chowdhury, T. R., Ahmed, Z., Islam, S., Akter, S., Ambinakudige, S., & Kung, H. (2021). Trend analysis and simulation of human vulnerability based on physical factors of riverbank erosion using RS and GIS. Earth Systems and Environment, 5(3), 709–723. doi:10.1007/s41748-021-00247-0
  • Congedo, L. (2021). Semi-automatic classification plugin: A python tool for the download and processing of remote sensing images in QGIS. Journal of Open Source Software, 6(64), 3172. doi:10.21105/joss.03172
  • Das, B. (2011). Stakeholders’ perception in identification of river bank erosion hazard: A case study. Natural Hazards, 58(3), 905–928. doi:10.1007/s11069-010-9698-z
  • Dewan, A., Corner, R., Saleem, A., Rahman, M. M., Haider, M. R., Rahman, M. M., & Sarker, M. H. (2017). Assessing channel changes of the Ganges-Padma river system in Bangladesh using landsat and hydrological data. GEOMORPHOLOGY, 276, 257–279. doi:10.1016/j.geomorph.2016.10.017
  • Dewan, A. M., Nishigaki, M., & Komatsu, M. (2003). Floods in Bangladesh: A comparative hydrological investigation on two catastrophic events. Journal of the Faculty of Environmental Science and Technology, Okayama University, 8(1), 53–62.
  • Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., & Li, X. (2016). Water bodies’ mapping from sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sensing, 8(4), 354. doi:10.3390/rs8040354
  • Eshita, N. R., Bhuiyan, M. A. H., & Saadat, A. H. M. (2023). Recent morphological shifting of padma river: Geoenvironmental and socioeconomic implications. Natural Hazards, 117(1), 447–472. doi:10.1007/s11069-023-05867-5
  • Ferdoush, J., Biswas, S., & Mondal, M. S. (2022). Assessment of meander‐bend migration of a major distributary of the Ganges river within Bangladesh. River, 1(2), 240–255. doi:10.1002/rvr2.21
  • Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated water extraction index: A new technique for surface water mapping using landsat imagery. Remote Sensing of Environment, 140, 23–35. doi:10.1016/j.rse.2013.08.029
  • Fisher, A., & Danaher, T. (2013). A water index for SPOT5 HRG satellite imagery, New South Wales, Australia, determined by linear discriminant analysis. Remote Sensing, 5(11), 5907–5925. doi:10.3390/rs5115907
  • Freihardt, J., & Frey, O. (2023). Assessing riverbank erosion in Bangladesh using time series of sentinel-1 radar imagery in the google earth engine. Natural Hazards and Earth System Sciences, 23(2), 751–770. doi:10.5194/nhess-23-751-2023
  • Gao, B. C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. doi:10.1016/s0034-4257(96)00067-3
  • Gazi, M. Y., Roy, H., Mia, M. B., & Akhter, S. H. (2020). Assessment of morpho-dynamics through geospatial techniques within the Padma-Meghna and Ganges-Jamuna river confluences, Bangladesh. KN Journal of Cartography and Geographic Information, 70(3), 127–139. doi:10.1007/s42489-020-00051-2
  • Halder, A., & Mowla Chowdhury, R. (2021). Evaluation of the river Padma morphological transition in the central Bangladesh using GIS and remote sensing techniques. International Journal of River Basin Management, 21(1), 21–35. doi:10.1080/15715124.2021.1879095
  • Hollstein, A., Segl, K., Guanter, L., Brell, M., & Enesco, M. (2016). Ready-to-use methods for the detection of clouds, cirrus, snow, shadow, water and clear sky pixels in sentinel-2 MSI images. Remote Sensing, 8(8), 666. doi:10.3390/rs8080666
  • Hooke, J. (1979). An analysis of the processes of river bank erosion. Journal of Hydrology, 42(1–2), 39–62. doi:10.1016/0022-1694(79)90005-2
  • Islam, S. N. (2016). Deltaic floodplains development and wetland ecosystems management in the Ganges–Brahmaputra–Meghna rivers delta in Bangladesh. Sustainable Water Resources Management, 2(3), 237–256. doi:10.1007/s40899-016-0047-6
  • Islam, S. N., & Gnauck, A. (2008). Mangrove wetland ecosystems in Ganges-Brahmaputra delta in Bangladesh. Frontiers of Earth Science in China, 2(4), 439–448. doi:10.1007/s11707-008-0049-2
  • Islam, M. R., & Islam, A. Z. (2021). Plan form changes of the Ganges-Jamuna confluence and its relation to flood. Remote Sensing Applications: Society and Environment, 22, 100525. doi:10.1016/j.rsase.2021.100525
  • JICA. (2005). The feasibility study of Padma bridge in the people’s republic of Bangladesh, final report, volume 5: River studies, Japan international cooperation agency (JICA). Nippon Koei Co., Ltd.: Construction Project Consultants, Inc. https://openjicareport.jica.go.jp/615/615/615_101_11788502.html
  • Ji, L., Zhang, L., & Wylie, B. (2009). Analysis of dynamic thresholds for the normalized difference water index. Photogrammetric Engineering, 75(11), 1307–1317. doi:10.14358/pers.75.11.1307
  • Kumar Pal, P., Rahman, A., & Anika Yunus, D. (2017). Analysis on river bank erosion-accretion and bar dynamics using multi-temporal satellite images. American Journal of Water Resources, 5(4), 132–141. doi:10.12691/ajwr-5-4-6
  • Langat, P. K., Kumar, L., & Koech, R. (2019). Monitoring river channel dynamics using remote sensing and GIS techniques. GEOMORPHOLOGY, 325, 92–102. doi:10.1016/j.geomorph.2018.10.007
  • Li, L., Yan, Z., Shen, Q., Cheng, G., Gao, L., & Zhang, B. (2019). Water body extraction from very high spatial resolution remote sensing data based on fully convolutional networks. Remote Sensing, 11(10), 1162. doi:10.3390/rs11101162
  • Mahmood, R., Ahmed, N., Zhang, L., & Li, G. (2020). Coastal vulnerability assessment of Meghna estuary of Bangladesh using integrated geospatial techniques. International Journal of Disaster Risk Reduction, 42, 101374. doi:10.1016/j.ijdrr.2019.101374
  • McFeeters, S. (2013). Using the normalized difference water index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sensing, 5(7), 3544–3561. doi:10.3390/rs5073544
  • McFEETERS, S. K. (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. doi:10.1080/01431169608948714
  • Mondal, M. S., Bala, S. K., Islam, G. M. T., Haque, M. A., Islam, M. R., & Biswas, S. (2020). Hydro-morphology of Bangladesh rivers: Reflections from a large study. Proceedings of IABSE-JSCE joint conference on advances in bridge engineering-IV, 26-27 August, Dhaka. pp. 426–432.
  • Nicholls, R. J., & Goodbred, S. L., Jr. (2005). Towards integrated assessment of the Ganges-Brahmaputra delta (Z. Chen, Y. Saito, & S. L. Goodbred, Eds.). pp. 168–181. China Ocean Press. https://eprints.soton.ac.uk/53186/
  • Rana, M. S. (2017). Impact of riverbank erosion on population migration and resettlement of Bangladesh. Science Journal of Applied Mathematics and Statistics, 5(2), 60. doi:10.11648/j.sjams.20170502.11
  • Rashid, M. B. (2020). Channel bar development and bankline migration of the lower Padma river of Bangladesh. Arabian Journal of Geosciences, 13(14). doi:10.1007/s12517-020-05628-9
  • Rashid, M. B., & Habib, M. A. (2022). Channel bar development, braiding and bankline migration of the Brahmaputra-Jamuna river, Bangladesh through RS and GIS techniques. International Journal of River Basin Management, 1–13. doi:10.1080/15715124.2022.2118281
  • Rashid, M. B., Habib, M. A., Khan, R., & Islam, A. R. M. T. (2021). Land transform and its consequences due to the route change of the Brahmaputra river in Bangladesh. International Journal of River Basin Management, 21(1), 113–125. doi:10.1080/15715124.2021.1938095
  • Sarker, M. H., Huque, I., Alam, M., & Koudstaal, R. (2003). Rivers, chars and char dwellers of Bangladesh. International Journal of River Basin Management, 1(1), 61–80. doi:10.1080/15715124.2003.9635193
  • Sarker, S., & Rahman, M. M. (2018). Trend analysis of bank erosion of Jamuna river and migration impact: A case study on teota union of shibalaya upazila. Journal of Bangladesh Institute of Planners, 9(2016), 81–93.
  • Singha, P., & Pal, S. (2021). Livelihood vulnerability assessment of the Island (Char) dwellers in the Ganges riparian corridor, India. Geology Journal, 87(5), 3701–3717. doi:10.1007/s10708-021-10461-y
  • Woodroffe, C. D., Nicholls, R. J., Saito, Y., Chen, Z., & Goodbred, S. L. (2006). Landscape variability and the response of Asian megadeltas to environmental change. In Global change and integrated coastal management (pp. 277–314). Dordrecht: Springer. doi:10.1007/1-4020-3628-0_10
  • Xie, H., Luo, X., Xu, X., Pan, H., & Tong, X. (2016). Automated subpixel surface water mapping from heterogeneous urban environments using landsat 8 OLI imagery. Remote Sensing, 8(7), 584. doi:10.3390/rs8070584
  • Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. doi:10.1080/01431160600589179
  • Yang, J., & Du, X. (2017). An enhanced water index in extracting water bodies from landsat TM imagery. Annals of GIS, 23(3), 141–148. doi:10.1080/19475683.2017.1340339
  • Yang, Y., Liu, Y., Zhou, M., Zhang, S., Zhan, W., Sun, C., & Duan, Y. (2015). Landsat 8 OLI image based terrestrial water extraction from heterogeneous backgrounds using a reflectance homogenization approach. Remote Sensing of Environment, 171, 14–32. doi:10.1016/j.rse.2015.10.005
  • Yang, X., Zhao, S., Qin, X., Zhao, N., & Liang, L. (2017). Mapping of urban surface water bodies from sentinel-2 MSI imagery at 10 m resolution via NDWI-Based image sharpening. Remote Sensing, 9(6), 596. doi:10.3390/rs9060596