98
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental study of hydraulic losses in linear and nonlinear weirs: A comparative analysis

, ORCID Icon, &
Pages 378-390 | Received 24 Mar 2024, Accepted 25 Jun 2024, Published online: 01 Jul 2024

References

  • Bonakdari, H., Ebtehaj, I., Gharabaghi, B., Sharifi, A., & Mosavi, A. (2021). Prediction of discharge capacity of labyrinth weir with gene expression programming. Intelligent Systems and Applications: Proceedings of the 2020 Intelligent Systems Conference (IntelliSys) (Vol. 1. pp. 202–217). Springer International Publishing. https://doi.org/10.20944/preprints202001.0313.v1
  • Feili, J., Heidarnejad, M., Masjedi, A. R., & Asadilour, M. (2020). Experimental study of discharge coefficient of trapezoidal arced labyrinth weirs with different arc radius and cycle length. Iranian Journal of Soil and Water Research, 51(5), 1115–1126. https://doi.org/10.22059/ijswr.2020.293163.668411
  • Ghaderi, A., Daneshfaraz, R., Dasineh, M., & Francesco, S. (2020). Energy dissipation and hydraulics of flow over trapezoidal–triangular labyrinth weirs. Water, 12(7), 1992. https://doi.org/10.3390/w12071992
  • Ghare, A. D., Mhaisalkar, V. A., & Porey, P. D. (2008). An approach to optimal design of trapezoidal labyrinth weirs. World Applied Sciences Journal, 3(6), 934–938. https://www.idosi.org/wasj/wasj3(6)/13.pdf
  • Haghiabi, A. H., Nou, M. R. G., & Parsaie, A. (2022). The energy dissipation of flow over the labyrinth weirs. Alexandria Engineering Journal, 61(5), 3729–3733. https://doi.org/10.1016/j.aej.2021.08.075
  • Idrees, A. K., & Al-Ameri, R. (2023). Investigation of flow characteristics and energy dissipation over new shape of the trapezoidal labyrinth weirs. Flow Measurement and Instrumentation, 89, 102276. https://doi.org/10.1016/j.flowmeasinst.2022.102276
  • Karimi, M., Jalili-Ghazizadeh, M. R., Saneie, M., Atari, J., Saneie, M., & Atari, J. (2019). Flow characteristics over asymmetric triangular labyrinth side weirs. Flow Measurement Instrument, 68, 101574. https://doi.org/10.1016/j.flowmeasinst.2019.101574
  • Lux, III F. (1993). Design methodologies for labyrinth weirs. Water Power and Dam Construction Proceeding, Nashville, Tenn. https://apps.dtic.mil/sti/pdfs/ADA307714.pdf#page=654
  • Majedi-Asl, M., Ghaderi, A., Kouhdaragh, M., & Omidpour Alavian, T. (2024). A performance comparison of the meta model methods for discharge coefficient prediction of labyrinth weirs. Flow Measurement and Instrumentation, 96, 102563. https://doi.org/10.1016/j.flowmeasinst.2024.102563
  • Mattos-Villarroel, E., Díaz-Delgado, C., Flores-Vel´azquez, J., Ojeda-Bustamante, W., & Salinas-Tapia, H. (2021). Influence of crest geometric on discharge coefficient efficiency of labyrinth weirs. Flow Measurement and Instrumentation, 81, 102031. https://doi.org/10.1016/j.flowmeasinst.2021.102031
  • Monjezi, R., Heidarnejad, M., Masjedi, A. R., Purmohammadi, M. H., & Kamanbedast, A. (2018). Laboratory investigation of the discharge coefficient of flow in arced labyrinth weirs with triangular plans. Flow Measurement and Instrumentation, 64, 64–70. https://doi.org/10.1016/j.flowmeasinst.2018.10.011
  • Tullis, J. P., Amanian, N., & Waldron, D. (1995). Design of labyrinth spillways. Journal of Hydraulic Engineering, 121(3), 247–255. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:3(247)