92
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Date kernel biochar: A green approach to methylene blue removal from polluted water in Iraq

, ORCID Icon &
Pages 428-437 | Received 11 Mar 2024, Accepted 08 Jul 2024, Published online: 22 Jul 2024

References

  • Abid, W., & Ammar, E. (2022). Date palm (Phoenix dactylifera L.) wastes valorization: A circular economy approach. In M. F. Ramadan & M. A. Farag (Eds.), Mediterranean fruits bio-wastes: Chemistry, functionality and technological applications (pp. 403–430). Springer.
  • Aliedeh, M. A., Aljbour, S. H., Al-Harahsheh, A. M., Al-Zboon, K., & Al-Harahsheh, S. (2021). Implementing 24-1 fractional factorial design for filling the gap in OVAT sorption studies of nitrate ions onto Jordanian Zeolitic Tuff. Journal of Chemical Technology and Metallurgy, 56(2), 331–341.
  • Aljbour, S. H., Al-Harahsheh, A. M., Aliedeh, M. A., Al-Zboon, K., & Al-Harahsheh, S. (2017). Phosphate removal from aqueous solutions by using natural Jordanian zeolitic tuff. Adsorption Science & Technology, 35(3–4), 284–299. https://doi.org/10.1177/0263617416675176
  • Aljeradat, R. A., Aljbour, S. H., & Jarrah, N. A. (2021). Natural minerals as potential catalysts for the pyrolysis of date kernels: Effect of catalysts on products yield and bio-oil quality. Energy Sources, Part A: Recovery, Utilization, Environmental Effects, 1–9. https://doi.org/10.1080/15567036.2021.2003485
  • Aljeradat, R. A., Aljbour, S. H., & Jarrah, N. A. (2022). Pyrolysis of date kernels using natural Jordanian Tripoli as a catalyst under different operational conditions. Case Studies in Chemical and Environmental Engineering, 6, 100212. https://doi.org/10.1016/j.cscee.2022.100212
  • Aljeradat, R. A., Aljbour, S. H., & Jarrah, N. A. (2023). Performance of chemically modified Tripoli in catalytic pyrolysis of date kernels. Case Studies in Chemical and Environmental Engineering, 7, 100319. https://doi.org/10.1016/j.cscee.2023.100319
  • Al-Wabel, M. I., Usman, A. R. A., Al-Farraj, A. S., Ok, Y. S., Abduljabbar, A., Al-Faraj, A. I., & Sallam, A. S. (2019). Date palm waste biochars alter a soil respiration, microbial biomass carbon, and heavy metal mobility in contaminated mined soil. Environmental Geochemistry and Health, 41(4), 1705–1722. https://doi.org/10.1007/s10653-017-9955-0
  • ASTM D3172. (2013). Standard practice for proximate analysis of coal and Coke (pp. D3172–13). ASTM International.
  • ASTM D3176. (2015). Standard practice for ultimate analysis of coal and Coke (pp. D3176–15). ASTM International.
  • Attia, A. I., Reda, F. M., Patra, A. K., Elnesr, S. S., Attia, Y. A., & Alagawany, M. (2021). Date (Phoenix dactylifera L.) by-products: Chemical composition, nutritive value and applications in poultry nutrition, an updating review. Animals, 11(4), 1133. https://doi.org/10.3390/ani11041133
  • Belhachemi, M., & Addoun, F. (2011). Comparative adsorption isotherms and modeling of methylene blue onto activated carbons. Applied Water Science, 1(3–4), 111–117. https://doi.org/10.1007/s13201-011-0014-1
  • Bhattacharyya, K. G., & Sharma, A. (2005). Kinetics and thermodynamics of methylene blue adsorption on neem (azadirachta indica) leaf powder. Dyes and Pigments, 65(1), 51–59. https://doi.org/10.1016/j.dyepig.2004.06.016
  • Box, G. E., Hunter, J. S., & Hunter, W. G. (2005). Statistics for experimenters. Wiley.
  • Brunow, G., & Lundquist, K. (2010). Functional groups and bonding patterns in lignin (including the lignin-carbohydrate complexes). In C. Heitner, D. Dimmel, & J. Schmidt (Eds.), Lignin and lignans, lignin (pp. 268–291). New York: CRC Press, Taylor Francis Group.
  • Bulut, Y., & Aydın, H. (2006). A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 194(1–3), 259–267. https://doi.org/10.1016/j.desal.2005.10.032
  • Cha, J. S., Park, S. H., Jung, S.-C., Ryu, C., Jeon, J.-K., Shin, M.-C., & Park, Y.-K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1–15. https://doi.org/10.1016/j.jiec.2016.06.002
  • CSO. (2020). Palm date production statistics. Iraqi Central Statistical Organization.
  • El Hadrami, A., & Al-Khayri, J. M. (2012). Socioeconomic and traditional importance of date palm. Emirates Journal of Food and Agriculture, 24(5), 371–385.
  • Erskine, W., Moustafa, A. T., Osman, A. E., Lashine, Z., Nejatian, A., Badawi, T., & Ragy, S. M. (2004). Date palm in the GCC countries of the Arabian Peninsula. Proceedings of Regional Workshop on Date Palm Development in the Arabian Peninsula (pp. 29–31). Abu Dhabi, UAE.
  • Foong, S. Y., Liew, R. K., Yang, Y., Cheng, Y. W., Yek, P. N. Y., Mahari, W. A. W., Lee, X. Y., Han, C. S., Vo, D.-V. N., Van Le, Q., Aghbashlo, M., Tabatabaei, M., Sonne, C., Peng, W., & Lam, S. S. (2020). Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions. Chemical Engineering Journal, 389, 124401. https://doi.org/10.1016/j.cej.2020.124401
  • Franca, A. S., Oliveira, L. S., & Ferreira, M. E. (2009). Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds. Desalination, 249(1), 267–272. https://doi.org/10.1016/j.desal.2008.11.017
  • Ghosh, D., & Bhattacharyya, K. G. (2002). Adsorption of methylene blue on kaolinite. Applied Clay Science, 20(6), 295–300. https://doi.org/10.1016/S0169-1317(01)00081-3
  • Jahan, F., & Happy, A. A. (2022). Revolutionizing plant-based extracts for skin care and therapeutics. In S. H. M. Setapar, A. Ahmad, & M. Jawaid (Eds.), Nanotechnology for the preparation of cosmetics using plant-based extracts (pp. 75–130). Elsevier.
  • Okeola, F. O., & Odebunmi, E. O. (2010). Freundlich and Langmuir isotherms parameters for adsorption of methylene blue by activated carbon derived from agrowastes. Advances in Natural Applied Sciences, 4(3), 281–289.
  • Öktem, Y. A., Soylu, S. G. P., & Aytan, N. (2012). The adsorption of methylene blue from aqueous solution by using waste potato peels; equilibrium and kinetic studies. Journal of Scientific & Industrial Research, 71(12), 817–821. http://nopr.niscpr.res.in/handle/123456789/15131
  • Punyapalakul, P., Suksomboon, K., Prarat, P., & Khaodhiar, S. (2013). Effects of surface functional groups and porous structures on adsorption and recovery of perfluorinated compounds by inorganic porous silicas. Separation Science and Technology, 48(5), 775–788. https://doi.org/10.1080/01496395.2012.710888
  • Sakhiya, A. K., Anand, A., & Kaushal, P. (2020). Production, activation, and applications of biochar in recent times. Biochar, 2(3), 253–285. https://doi.org/10.1007/s42773-020-00047-1
  • Sarioglu, M., & Atay, U. (2006). Removal of methylene blue by using biosolid. Global NEST Journal, 8(2), 113–120. https://doi.org/10.30955/gnj.000351
  • Suriyanon, N., Punyapalakul, P., & Ngamcharussrivichai, C. (2013). Mechanistic study of diclofenac and carbamazepine adsorption on functionalized silica-based porous materials. Chemical Engineering Journal, 214, 208–218. https://doi.org/10.1016/j.cej.2012.10.052
  • Tahir, A. H., Al-Obaidy, A. H. M., & Mohammed, F. H. (2020). Biochar from date palm waste, production, characteristics and use in the treatment of pollutants: A review. In IOP Conference Series: Materials Science and Engineering. 4th International Conference on Buildings, Construction and Environmental Engineering, Istanbul, Turkey, October 7–9, 2019 (Vol. 737, p. 0121171). IOP Publishing. https://doi.org/10.1088/1757-899X/737/1/012171
  • Tong, Y., Mcnamara, P. J., & Mayer, B. K. (2019). Adsorption of organic micropollutants onto biochar: A review of relevant kinetics, mechanisms and equilibrium. Environmental Science: Water Research & Technology, 5(5), 821–838. https://doi.org/10.1039/C8EW00938D
  • Younas, A., Naqvi, S. A., Khan, M. R., Shabbir, M. A., Jatoi, M. A., Anwar, F., Inam‐Ur‐Raheem, M., Saari, N., & Aadil, R. M. (2020). Functional food and nutra-pharmaceutical perspectives of date (Phoenix dactylifera L.) fruit. Journal of Food Biochemistry, 44(9), e13332. https://doi.org/10.1111/jfbc.13332