129
Views
5
CrossRef citations to date
0
Altmetric
Articles

Classifying physiographic regimes on terrain and hydrologic factors for adaptive generalization of stream networks

ORCID Icon, ORCID Icon & ORCID Icon
Pages 4-21 | Received 08 Dec 2016, Accepted 20 Feb 2018, Published online: 20 Mar 2018

References

  • Anderson-Tarver, C., Leyk, S., & Buttenfield, B. P. (2011). Fuzzy modeling of geometric textures for identifying archipelagos in area-patch generalization. Cartography and GIScience, 38(2), 137–146.
  • Ball, G. H., & Hall, D. J. (1965). Isodata, a novel method of data analysis and pattern classification. Stanford Research Institute. Technical Report for Information Sciences Branch, Office of Naval Research. p. 61.
  • Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24, 43–69. doi: 10.1080/02626667909491834
  • Brewer, C. A., Buttenfield, B. P., & Usery, E. L. (2009). Evaluating generalizations of hydrography in differing terrains for the National Map of the United States. Proceedings, International Cartographic Conference, Nov. 16–21, 2009, Santiago, Chile.
  • Buttenfield, B. P., Stanislawski, L. V., & Brewer, C. A. (2010). Multiscale representations of water: Tailoring generalization sequences to specific physiographic regimes. Sixth International Conference on Geographic Information Science, Sept. 14–17, 2010, Zurich, Switzerland.
  • Buttenfield, B. P., Stanislawski, L. V., & Brewer, C. A. (2011). Adapting generalization tools to physiographic diversity for the USGS national hydrography dataset. Cartography and GIScience, 38(3), 289–301.
  • Comer, P., Faber-Langendoen, D., Evans, R., Gawler, S., Josse, C., Kittel, G., … Teague, J. (2003). Ecological systems of the United States: A working classification of U.S. Terrestrial systems. Arlington, VA: NatureServe. p. 75. Retrieved from http://www.natureserve.org/library/usEcologicalsystems.pdf
  • Easson, G., & Robinson, H. (2001). Assembling DEM files for watershed analysis, ArcUser, July–September.
  • Fenicia, F., Kavetski, D., Savenije, H. H. G., & Pfister, L. (2016). From spatially variable streamflow to distributed hydrological models: Analysis of key modeling decisions. Water Resources Research, 52, 954–989. doi: 10.1002/2015WR017398
  • Fenneman, N. M. (1916). Physiographic divisions of the United States. Annals of the Association of American Geographers, 6, 19–98. Republished in 1928 (same journal) 18(4), 261–353. Published online. 2009. doi: 10.1080/00045601609357047
  • Fenneman, N. M., & Johnson, D. W. (1946). Physiographic Divisions of the Conterminous United States: Washington, D.C., U.S. Geological Survey special map series, scale 1:7,000,000. Retrieved from http://water.usgs.gov/GIS/metadata/usgswrd/XML/physio.xml
  • Gilliom, R. G., Alley, W. M., & Gurtz, M. E. (1995). Design of the National Water-Quality Assessment Program--occurrence and distribution of water-quality conditions: U.S. Geological Survey Circular 1112, p. 33.
  • Gökgöz, T., Sen, A., Memduhoglu, A., & Hacar, M. (2015). A new algorithm for cartographic simplification of streams and lakes using deviation angles and error bands. ISPRS International Journal of Geo-Information, 4, 2185–2204. doi: 10.3390/ijgi4042185
  • Grohmann, C. H., Smith, M. J., & Riccomini, C. (2009). Surface roughness of topography: A multi-scale analysis of landform elements in Midland Valley, Scotland, Proceedings of Geomorphometry 2009, Aug. 31–Sept. 2, 2009, Zurich, Switzerland.
  • Jensen, J. R. (1996). Introductory digital image processing (2nd ed.). Upper Saddle River, NJ: Prentice Hall, pp. 229–238.
  • Jolliffe, I. T., (2002). Principal component analysis (2nd ed.). New York: Springer-Verlag, p. 488. doi: 10.1007/b98835
  • McCabe, G. J., & Markstrom, S. L. (2007). A monthly water-balance model driven by a graphical user interface. U.S. Geological Survey, Open-File Report 2007-1088, p. 6. Retrieved from http://pubs.usgs.gov/of/2007/1088/pdf/of07-1088_508.pdf.
  • McCabe, G. J., & Wolock, D. M. (2008). Joint variability of global runoff and global sea surface temperatures. Journal of Hydrometeorology, 9, 816–824. doi: 10.1175/2008JHM943.1
  • Omernik, J. M. (1987). Ecoregions of the conterminous United States. Annals of the Association of American Geographers, 77, 118–125. doi: 10.1111/j.1467-8306.1987.tb00149.x
  • Omernik, J. M., & Griffith, G. E. (1991). Ecological regions versus hydrologic units – frameworks for managing water quality. Journal of Soil and Water Conservation, 46, 334–340.
  • Reed, J. C., & Bush, C. A. (2005). Generalized geologic map of the United States, Puerto Rico, and the U.S. Virgin Islands. United States Geological Survey. Retrieved from http://pubs.usgs.gov/atlas/geologic/
  • Sayre, R., Comer, P., Warner, H., & Cress, J. (2009). A new map of standardized terrestrial ecosystems of the conterminous United States. Reston, VA: U.S. Geological Survey Professional Paper #1768. p. 17. Retrieved from http://pubs.usgs.gov/pp/1768/pp1768.pdf
  • Stanislawski, L. V. (2008). Development of a knowledge-based network pruning strategy for automated generalisation of the United States National Hydrography Dataset, 11th ICA Workshop on Generalisation and Multiple Representation. June 20–21, 2008, Montpellier, France.
  • Stanislawski, L. V. (2009). Feature pruning by upstream drainage area to support automated generalization of the United States National Hydrography Dataset. Computers, Environment and Urban Systems, 33(5), 325–333. doi: 10.1016/j.compenvurbsys.2009.07.004
  • Stanislawski, L. V., & Buttenfield, B. P. (2011). Hydrographic feature generalization in dry mountainous terrain. Cartography and GIScience, 38(2), 117–125.
  • Stanislawski, L. V., Buttenfield, B. P., & Doumbouya, A. (2015). A rapid approach for automated comparison of independently derived stream networks. Cartography and Geographic Information Science, 42(5), 435–448. doi: 10.1080/15230406.2015.1060869
  • Stanislawski, L. V., Buttenfield, B. P., Finn, M. P., & Roth, K. (2009). Stratified database pruning to support local density variations in automated generalization of the United States National Hydrography Dataset. 24th International Cartography Conference, 15–21 Nov. 2009, Santiago, Chile.
  • Stanislawski, L. V., Buttenfield, B. P., & Samaranayake, V. A. (2010). Automated metric assessment of hydrographic feature generalization through bootstrapping. 12th ICA Workshop on Generalization and Multiple Representations, September 2010, Zurich, Switzerland.
  • Stanislawski, L. V., Finn, M., Usery, E. L., & Barnes, M. (2007). Assessment of a rapid approach for estimating catchment areas for surface drainage lines. Proceedings ACSM-IPLSA-MSPS, St. Louis, Missouri, March 9–12, 10 p.
  • Stanislawski, L. V., Liu, Y., Wendel, J., & Buttenfield, B. P. (2017). An open source solution to high performance processing for extracting surface water drainage networks from diverse terrain conditions. Cartography and GIScience. doi:10.1080/15230406.2017.1337524
  • Stanislawski, L. V., Raposo, P., Howard, M., & Buttenfield, B. P. (2012). Automated metric assessment of line simplification in humid landscapes. Proceedings, Auto-Carto 12, Columbus, Ohio, September 16–18, p. 12.
  • Stoter, J., Post, M., van Altena, V., Nijhuis, R., & Bruns, B. (2014). Fully automated generalization of a 1:50k map from 1:10k data. Cartography and GIScience, 41(1), 1–13. doi: 10.1080/15230406.2013.824637
  • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38(1), 55–94. doi: 10.2307/210739
  • Töpfer, F., & Pillewizer, W. (1966). The principles of selection. The Cartographic Journal, 3, 10–16. doi: 10.1179/caj.1966.3.1.10
  • Touya, G. (2008). First thoughts for the orchestration of generalisation methods on heterogeneous landscapes. Proceedings, 12th ICA Workshop on Generalizations. Montpellier, France. Retrieved from https://kartographie.geo.tu-dresden.de/downloads/ica-gen/workshop2008/01_Touya.pdf
  • Tucker, G. E., Catani, F., Rinaldo, A., & Bras, R. L. (2001). Statistical analysis of drainage density from digital terrain data. Geomorphology, 36(3–4), 187–202. doi: 10.1016/S0169-555X(00)00056-8
  • U.S. Department of Agriculture. (1994). State Soil Geographic STATSGO data base – data use information. National Soil Survey Center, Fort Worth, Texas, Miscellaneous Publication Number 1492, p. 35.
  • Wang, Z. (1996). Manual versus automated line generalization. GIS/LIS ‘96 Proceedings, pp. 94–106.
  • Wang, Z., & Muller, J. C. (1998). Line generalization based on analysis of shape characteristics. Cartography and Geographical Information Systems, 25(1), 3–15. doi: 10.1559/152304098782441750
  • Wendel, J., Buttenfield, B. P., & Stanislawski, L. V. (2016). An evaluation of unsupervised and supervised learning algorithms for clustering landscape types in the United States. Cartography and GIScience, 43(3), 233–249. doi: 10.1080/15230406.2015.1067829
  • Winter, T. C. (2001). The concept of hydrologic landscapes. Journal of the American Water Resources Association, 37, 335–349. doi: 10.1111/j.1752-1688.2001.tb00973.x
  • Wolock, D. M. (1993). Simulating the variable-source-area concept of streamflow generation with the watershed model TOPMODEL. U.S. Geological Survey Water-Resources Investigations Report 93-4124, p. 33.
  • Wolock, D. M. (2003a). Flow characteristics at U.S. Geological Survey streamgages in the conterminous United States. U.S. Geological Survey Open-File Report 2003-146. Digital dataset available, Retrieved from http://water.usgs.gov/lookup/getspatial?qsitesdd.
  • Wolock, D. M. (2003b). Hydrologic landscape regions of the United States. U.S. Geological Survey Open-File Report 2003–145, Digital data set available. Retrieved from http://water.usgs.gov/lookup/getspatial?hlrus.
  • Wolock, D. M., & McCabe, G. J. (1999). Estimates of runoff using water-balance and atmospheric general circulation models. Journal of the American Water Resources Association, 35(6), 1341–1350. doi: 10.1111/j.1752-1688.1999.tb04219.x
  • Wolock, D. M., Winter, T. C., & McMahon, G. (2004). Delineation and evaluation of hydrologic landscape regions in the United States using geographic information system tools and multivariate statistical analyses. Environmental Management, 34(Suppl. 1), s71–s88. doi: 10.1007/s00267-003-5077-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.