200
Views
12
CrossRef citations to date
0
Altmetric
Articles

Automatic derivation of on-demand tactile maps for visually impaired people: first experiments and research agenda

ORCID Icon, ORCID Icon, &
Pages 67-91 | Received 28 Jan 2018, Accepted 06 Jun 2018, Published online: 07 Aug 2018

References

  • Balley, S., Baella, B., Christophe, S., Pla, M., Regnauld, N., & Stoter, J. (2014). Map specifications and user requirements. In D. Burghardt, C. Duchêne, and W. Mackaness (Eds.), Abstracting geographic information in a data rich world (pp. 17–52). Springer International Publishing. Retrieved from http://dx.doi.org/10.1007/978-3-319-00203-3_2.
  • Barrault, M., Regnauld, N., Duchêne, C., Haire, K., Baeijs, C., Demazeau, Y., & Weibel, R. (2001). Integrating multi-agent, object-oriented, and algorithmic techniques for improved automated map generalisation. In 20th international cartographic conference, Beijing, China (Vol. 3, pp. 2110–2116).
  • Brock, A., Truillet, P., Oriola, B., & Jouffrais, C. (2010). Usage of multimodal maps for blind people: Why and how. In ACM international conference on interactive tabletops and surfaces (pp. 247–248). New York, NY: ACM. Retrieved from http://dx.doi.org/10.1145/1936652.1936699.
  • Brock, A., Truillet, P., Oriola, B., Picard, D., & Jouffrais, C. (2012). Design and user satisfaction of interactive maps for visually impaired people. In K. Miesenberger, A. Karshmer, P. Penaz, and W. Zagler (Eds.), Computers helping people with special needs (Vol. 7383, pp. 544–551). Berlin/Heidelberg: Springer. Retrieved from https://arxiv.org/ftp/arxiv/papers/1207/1207.4776.pdf.
  • Buchin, K., Meulemans, W., Van Renssen, A., & Speckmann, B. (2016, April). Area-preserving simplification and schematization of polygonal subdivisions. ACM Transactions on Spatial Algorithms and Systems, 2(1).1–36. doi: 10.1145/2818373
  • Çöltekin, A., Brychtová, A., Griffin, A. L., Robinson, A. C., Imhof, M., & Pettit, C. (2016, October 14). Perceptual complexity of soil-landscape maps: A user evaluation of color organization in legend designs using eye tracking. International Journal of Digital Earth, 20.560–581.
  • Červenka, P., Břinda, K., Hanousková, M., Hofman, P., & Seifert, R. (2016). Blind friendly maps. In K. Miesenberger, C. Bühler, and P. Penaz (Eds.), Computers helping people with special needs (Vol. 9759, pp. 131–138). Springer International Publishing. Retrieved from http://dx.doi.org/10.1007/978-3-319-41267-2_18.
  • Christophe, S. (2012, September). Cartographic styles between traditional and original (towards a cartographic style model). In Autocarto conference.
  • Christophe, S., Dumenieu, B., Turbet, J., Hoarau, C., Mellado, N., Ory, J., & Vanderhaeghe, D. (2016 May). Map style formalization: Rendering techniques extension for cartography. In D. Mould & P. Bénard (Eds.), Proceedings of non-photorealistic animation and rendering, Lisbon, Portugal.
  • Damen, J., van Kreveld, M., & Spaan, B. (2008). High quality building generalization by extending the morphological operators. In Proceedings of 12th ICA workshop on generalization and multiple representation, Montpellier, France.
  • de Oliveira, S. T., Suemitsu, K., & Okimoto, M. L. L. R. (2016). Design of a tactile map: An assistive product for the visually impaired. In F. Rebelo & M. Soares (Eds.), Advances in ergonomics in design (Vol. 485, pp. 711–719). Springer International Publishing. Retrieved from http://dx.doi.org/10.1007/978-3-319-41983-1_64.
  • Ducasse, J., Macé, M., & Jouffrais, C. (2015). From open geographical data to tangible maps: Improving the accessibility of maps for visually impaired people. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-3/W3, 517–523.
  • Götzelmann, T. (2016). LucentMaps: 3D printed audiovisual tactile maps for blind and visually impaired people. In Proceedings of the 18th international ACM Sigaccess conference on computers and accessibility (pp. 81–90). New York, NY: ACM.
  • Gaffuri, J., & Trévisan, J. (2004, August). Role of urban patterns for building generalisation: An application of AGENT. In ICA workshop on generalisation and multiple representation, commission on map generalisation.
  • Gem-Ef (2001, July 18). Guide de l'acheteur public de produits graphiques en relief à l'usage des personnes déficientes visuelles (Tech. Rep.). Observatoire de l'achat public, Ministère des finances.
  • Godfrey, L., & Mackaness, W. (2017, March 21). The bounds of distortion: Truth, meaning and efficacy in digital geographic representation. International Journal of Cartography, 31–14. doi: 10.1080/23729333.2017.1301348
  • Habel, C., Kerzel, M., & Lohmann, K. (2010). Verbal assistance in tactile-map explorations: A case for visual representations and reasoning. In Proceedings of the 7th AAAI conference on visual representations and reasoning (pp. 34–41). AAAI Press. Retrieved from http://portal.acm.org/citation.cfm?id=2908593.
  • Hennig, S., Zobl, F., & W. W. Wasserburger (2017). Accessible web maps for visually impaired users: Recommendations and example solutions. Cartographic Perspectives, 88. http://cartographicperspectives.org/index.php/journal/article/view/1391.
  • Jansson, G. (1973). Rapport nr 44. projektet PUSS XVI: Linjeoch ytsymboler for taktila kartor (Tech. Rep.). Uppsala universitet.
  • Kern, R. (2016, December). Cartographie et malvoyance – du papier au numérique. Cartes & Géomatique, 229–230, 167–174.
  • Koch, W. G. (2012). State of the art of tactile maps for visually impaired people. In M. Buchroithner (Ed.), True-3d in cartography (pp. 137–151). Berlin/Heidelberg: Springer. Retrieved from http://dx.doi.org/10.1007/978-3-642-12272-9_9.
  • Liu, Y., Guo, Q., Sun, Y., & Ma, X. (2014, December 3). A combined approach to cartographic displacement for buildings based on skeleton and improved elastic beam algorithm. PLOS ONE, 9(12), e113953+. http://dx.doi.org/10.1371/journal.pone.0113953.
  • Lobben, A. (2015). Tactile maps and mapping. Journal of Blindness Innovation and Research, 5(1). doi: 10.5241/5-65
  • Loi, H., Hurtut, T., Vergne, R., & Thollot, J. (2013, July 21–25). Discrete texture design using a programmable approach. New York, NY: ACM. In ACM SIGGRAPH 2013 talks.
  • Loi, H., Hurtut, T., Vergne, R., & Thollot, J. (2017, May). Programmable 2d arrangements for element texture design. ACM Transactions on Graphics, 36(3), 27:1–27:17. http://doi.acm.org/10.1145/2983617.
  • Lokhat, I., & Touya, G. (2016, December). Enhancing building footprints with squaring operations. Journal of Spatial Information Science, 13, 33–60. http://www.josis.org/index.php/josis/article/view/276/166.
  • Mackaness, W. A. (2007). Understanding geographic space. In W. A. Mackaness, A. Ruas, and T. Sarjakoski (Eds.), The generalisation of geographic information: Models and applications (pp. 1–10). Amsterdam, Netherlands: Elsevier.
  • Mackaness, W. A., & Edwards, G. (2002). The importance of modelling pattern and structure in automated map generalisation. In Proceedings of the joint ISPRS/ICA workshop on multi-scale representations of spatial data (pp. 7–8). Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.1311.
  • Mackaness, W. A., & Ruas, A. (2007). Evaluation in the map generalisation process. In W. A. MacKaness, A. Ruas, and L. T. Sarjakoski (Eds.), Generalisation of geographic information (pp. 89–111). London: Elsevier.
  • Mellado, N., Vanderhaeghe, D., Hoarau, C., Christophe, S., Brédif, M., & Barthe, L. (2017, July). Constrained palette-space exploration. ACM Transactions on Graphics, 36(4).114 doi: 10.1145/3072959.3073650
  • Miele, J. A., Landau, S., & Gilden, D. (2006, May 1). Talking tmap: Automated generation of audio-tactile maps using smith-Kettlewell's tmap software. British Journal of Visual Impairment, 24(2), 93–100. http://dx.doi.org/10.1177/0264619606064436.
  • Miele, J. A., & Marston, J. (2005). Tactile map automated production (TMAP): On-demand accessible street maps for blind and visually impaired travelers. In Proceedings of the annual meeting of the American Association of Geographers, Denver, CO, USA.
  • Miller, I., Pather, A., Milbury, J., Hasty, L., O'Day, A., & Spence, D. (2010). Guidelines and standards for tactile graphics (Tech. Rep.). The Braille Authority of North America.
  • Nolan, C. Y., & Morris, J. E. (1971). Improvement of tactual symbols for blind children: Final report (Tech. Rep.). Louisville, KY: American Printing House for the Blind.
  • Paladugu, D. A., Wang, Z., & Li, B. (2010). On presenting audio-tactile maps to visually impaired users for getting directions. In Chi '10 extended abstracts on human factors in computing systems (pp. 3955–3960). New York, NY: ACM.
  • Regnauld, N., Touya, G., Gould, N., & Foerster, T. (2014, March 3). Process modelling, web services and geoprocessing. In D. Burghardt, C. Duchêne, and W. Mackaness (Eds.), Abstracting geographic information in a data rich world (pp. 198–225). Berlin/Heidelberg: Springer.
  • Renard, J., Gaffuri, J., Duchêne, C., & Touya, G. (2011). Automated generalisation results using the agent-based platform CartAGen. In Proceedings of 25th international cartographic conference (ICC'11) – poster session, Paris, France.
  • Roth, R. E., Çöltekin, A., Delazari, L., Filho, H. F., Griffin, A., Hall, A., & van Elzakker, C. P. J. M. (2017, October 30). User studies in cartography: Opportunities for empirical research on interactive maps and visualizations. International Journal of Cartography, 3(sup1), 61–89. http://dx.doi.org/10.1080/23729333.2017.1288534.
  • Rowell, J., & Ungar, S. (2003). The world of touch: An international survey of tactile maps. Part 2: Design. British Journal of Visual Impairment, 21(3), 105–110. doi: 10.1177/026461960302100304
  • Rylov, M. A., & Reimer, A. W. (2014). A comprehensive multi-criteria model for high cartographic quality Point-Feature label placement. Cartographica: The International Journal for Geographic Information and Geovisualization, 49(1), 52–68. http://dx.doi.org/10.3138/carto.49.1.2137.
  • Salichtchev, K. A. (1983). Cartographic communication: A theoretical survey. In D. R. F. Taylor (Ed.), Graphic communication and design in contemporary cartography (Vol. 2, pp. 11–36). New York, NY: Wiley.
  • Schwarzbach, F., Sarjakoski, T., Oksanen, J., Sarjakoski, L.T., & Weckman, S. (2012). Physical 3d models from lidar data as tactile maps for visually impaired persons. In M. Buchroithner (Ed.), True-3d in cartography (pp. 169–183). Berlin, Heidelberg: Springer. Retrieved from http://dx.doi.org/10.1007/978-3-642-12272-9_11.
  • Sester, M., Jokar Arsanjani, J., Klammer, R., Burghardt, D., & Haunert, J.H (2014). Integrating and generalising volunteered geographic information. In D. Burghardt, C. Duchêne, and W. Mackaness (Eds.), Abstracting geographic information in a data rich world (pp. 119–155). Basel: Springer International Publishing.
  • Simonnet, M., Bothorel, C., Maximiano, L. F., & Thépaut, A. (2012, June). Geotablet, une application cartographique pour les personnes déficientes visuelles. In Proceedings of handicap 2012 (Vol. 7, pp. 8–13). Paris, France: IFRATH. Retrieved from https://hal.archives-ouvertes.fr/hal-00732475.
  • Štampach, R., & Mulíčková, E. (2016, November 4). Automated generation of tactile maps. Journal of Maps, 12(sup1), 532–540. doi: 10.1080/17445647.2016.1196622
  • Stoter, J., Burghardt, D., Duchêne, C., Baella, B., Bakker, N., Blok, C., & Schmid, S. (2009, September 11). Methodology for evaluating automated map generalization in commercial software. Computers, Environment and Urban Systems, 33(5), 311–324. doi: 10.1016/j.compenvurbsys.2009.06.002
  • Stott, J. M., & Rodgers, P. (2004, August). Metro map layout using multicriteria optimization. IEEE Transactions on Visualization and Computer Graphics, 17(1), 355–362. http://dx.doi.org/10.1109/IV.2004.
  • Tatham, A. F. (1991). The design of tactile maps: theoretical and practical considerations. In M. Rybaczac & K. Blakemore (Eds.), Proceedings of international cartographic association conference: Mapping the nations (pp. 157–166), Bournemouth, UK.
  • Touya, G. (2010). A road network selection process based on data enrichment and structure detection. Transactions in GIS, 14(5), 595–614. http://dx.doi.org/10.1111/j.1467-9671.2010.01215.x.
  • Touya, G. (2012). Social welfare to assess the global legibility of a generalized map. In N. Xiao, M. P. Kwan, M. F. Goodchild, and S. Shekhar (Eds.), Geographic information science 7th international conference, GIScience 2012 (Vol. 7478, pp. 198–211). Berlin, Heidelberg: Springer.
  • Touya, G. (2017). Vers l'automatisation de la production de cartes. France: Habilitation (hdr), Université Paris Est.
  • Touya, G., & Baley, M. (2017). Level of details harmonization operations in OpenStreetMap based large scale maps. In M. Leitner & J. Jokar Arsanjani (Eds.), Citizen empowered mapping (Vol. 18, pp. 3–25). Springer International Publishing. Retrieved from http://dx.doi.org/10.1007/978-3-319-51629-5_1.
  • Touya, G., Bucher, B., Falquet, G., Jaara, K., & Steiniger, S. (2014, March). Modelling geographic relationships in automated environments. In D. Burghardt, C. Duchêne, and W. Mackaness (Eds.), Abstracting geographic information in a data rich world (pp. 53–82). Berlin/Heidelberg: Springer. Retrieved from http://dx.doi.org/10.1007/978-3-319-00203-3_3.
  • Touya, G., Decherf, B., Lalanne, M., & Dumont, M. (2015, September). Comparing image-based methods for assessing visual clutter in generalized maps. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-3/W5.
  • Touya, G., Hoarau, C., & Christophe, S. (2016). Clutter and map legibility in automated cartography: A research agenda. Cartographica: The International Journal for Geographic Information and Geovisualization, 51(4), 198–207. doi: 10.3138/cart.51.4.3132
  • Ungar, S., Jehoel, R., Mccallum, D., & Rowell, J. (2005). Tactualization of spatial information: Towards a perceptual-cognitive approach to tactile map design. In Proceedings of xxii international cartographic conference, La Coruña, Spain.
  • van Dijk, T. C., & Haunert, J. H. (2014, March 14). Interactive focus maps using least-squares optimization. International Journal of Geographical Information Science, 281–24. doi: 10.1080/13658816.2014.887718
  • Vasconcellos, R. (1996). Tactile mapping design and the visually impaired user. In C. H. Wood & C. P. Keller (Eds.), Cartographic design: Theoretical and practical perspectives (pp. 91–102). New York, NY: Wiley.
  • Voženílek, V., Růžičková, V., Finková, D., Ludíková, L., Nĕmcová, Z., Doležal, J., & Regec, V. (2012). Hypsometry in tactile maps. In M. Buchroithner (Ed.), True-3d in cartography (pp. 153–168). Berlin, Heidelberg: Springer. Retrieved from http://dx.doi.org/10.1007/978-3-642-12272-9_10.
  • Ware, C. (2012). Information visualization, third edition: Perception for design (interactive technologies) (3rd ed.). Burlington, MA: Morgan Kaufmann.
  • Watanabe, T., Yamaguchi, T., Koda, S., & Minatani, K. (2014, July). Tactile map automated creation system using openstreetmap. In Proceedings of 14th international conference on computers helping people with special needs, Paris, France.
  • Wiedel, J. W., & Groves, P. A. (1969). Tactual mapping: Design, reproduction, reading and interpretation (Tech. Rep.). Washington, DC: US Dept. of Health, Education and Welfare.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.