789
Views
30
CrossRef citations to date
0
Altmetric
Articles

Is deep learning the new agent for map generalization?

ORCID Icon, &
Pages 142-157 | Received 08 Feb 2019, Accepted 10 Apr 2019, Published online: 09 May 2019

References

  • Borgo, R., Lee, B., Bach, B., Fabrikant, S., Jianu, R., Kerren, A., … Zhou, M. (2017). Crowdsourcing for information visualization: Promises and pitfalls. In D. Archambault, H. Purchase, & T. Hoßfeld (Eds.), Evaluation in the crowd. Crowdsourcing and human-centered experiments (pp. 96–138). Cham: Springer.
  • Burghardt, D., & Neun, M. (2006). Automated sequencing of generalisation services based on collaborative filtering. In M. Raubal, H. J. Miller, A. U. Frank, & M. F. Goodchild (Eds.), Geographic information science – 4th international conference GIScience (pp. 41–46). Münster, Germany: IFGI prints.
  • Duchêne, C., Baella, B., Brewer, C. A., Burghardt, D., Buttenfield, B. P., Gaffuri, J., … Wiedemann, A. (2014). Generalisation in practice within national mapping agencies. In D. Burghardt, C. Duchêne, & W. Mackaness (Eds.), Abstracting geographic information in a data rich world (pp. 329–391). Cham: Springer International Publishing.
  • Duchêne, C., Touya, G., Taillandier, P., Gaffuri, J., Ruas, A., & Renard, J. (2018). Multi-agents systems for cartographic generalization: Feedback from past and on-going research (Technical report). France: IGN.
  • Cheng, C., Liu, Q., Li, X., & Wang, Y. (2013). Building simplification using backpropagation neural networks: A combination of cartographers’ expertise and raster-based local perception. GIScience & Remote Sensing, 50(5), 527–542. doi: 10.1080/15481603.2013.823748
  • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., … Bengio, Y. (2014). Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, & K. Q. Weinberger (Eds.), Advances in neural information processing systems 27 (pp. 2672–2680). Montreal: Curran Associates, Inc.
  • Grünreich, D. (1985). Ein vorschlag zum aufbau einer grossmassstäbigen topographischkartographischen-Datenbank unter besonderer berücksichtigung der grundrissdateides ALK-systems. Nachrichten aus dem Karten- und Vermessungswesen, Series I, 95:55+.
  • Harrie, L. E. (2003). Weight-Setting and quality assessment in simultaneous graphic generalization. The Cartographic Journal, 40(3), 221–233. doi: 10.1179/000870403225012925
  • Harrie, L., Stigmar, H., & Djordjevic, M. (2015). Analytical estimation of map readability. ISPRS International Journal of Geo-Information, 4(2), 418–446. doi: 10.3390/ijgi4020418
  • Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2017). Image-to-Image translation with conditional adversarial networks. CVPR 2017.
  • Karsznia, I., & Weibel, R. (2018). Improving settlement selection for small-scale maps using data enrichment and machine learning. Cartography and Geographic Information Science, 45(2), 111–127. doi: 10.1080/15230406.2016.1274237
  • Kilpelainen, T. (2000). Knowledge acquisition for generalization rules. Cartography and Geographic Information Science, 27(1), 41–50. doi: 10.1559/152304000783547993
  • Landrieu, L., & Simonovsky, M. (2018). Large-scale point cloud semantic segmentation with superpoint graphs. In Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, Utah, USA.
  • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. doi: 10.1109/5.726791
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. doi: 10.1038/nature14539
  • Ma, L. (2017). Features extraction of buildings and generalization using deep learning. In Proceedings of 28th International Cartographic Conference, Washington, DC, USA.
  • Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359. doi: 10.1109/TKDE.2009.191
  • Plazanet, C., Bigolin, N., & Ruas, A. (1998). Experiments with learning techniques for spatial model enrichment and line generalization. Geoinformatica, 2(4), 315–333. doi: 10.1023/A:1009753320636
  • Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. CoRR, abs/1505.04597.
  • Ruas, A., & Duchêne, C. (2007). A prototype generalisation system based on the multi-agent system paradigm. In W. A. Mackaness, A. Ruas, & L. T. Sarjakoski (Eds.), Generalisation of geographic information (pp. 269–284). Amsterdam: Elsevier.
  • Sester, M. (2000). Knowledge acquisition for the automatic interpretation of spatial data. International Journal of Geographical Information Science, 14(1), 1–24. doi: 10.1080/136588100240930
  • Sester, M., Feng, Y., & Thiemann, F. (2018). Building generalization using deep learning. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4, 565–572. doi: 10.5194/isprs-archives-XLII-4-565-2018
  • Simo-Serra, E., Iizuka, S., Sasaki, K., & Ishikawa, H. (2016). Learning to simplify: Fully convolutional networks for rough sketch cleanup. ACM Transactions on Graphics, 35(4), article no. 121. doi: 10.1145/2897824.2925972
  • Steiniger, S., Lange, T., Burghardt, D., & Weibel, R. (2008). An approach for the classification of urban building structures based on discriminant analysis techniques. Transactions in GIS, 12(1), 31–59. doi: 10.1111/j.1467-9671.2008.01085.x
  • Stoter, J., Burghardt, D., Duchêne, C., Baella, B., Bakker, N., Blok, C., … Schmid, S. (2009). Methodology for evaluating automated map generalization in commercial software. Computers, Environment and Urban Systems, 33(5), 311–324. doi: 10.1016/j.compenvurbsys.2009.06.002
  • Stoter, J., Zhang, X., Stigmar, H., & Harrie, L. (2014). Evaluation in generalisation. In D. Burghardt, C. Duchêne, & W. Mackaness (Eds.), Abstracting geographic information in a data Rich world, Lecture notes in geoinformation and cartography (pp. 259–297). Springer International Publishing.
  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9.
  • Taillandier, P., Duchêne, C., & Drogoul, A. (2011). Automatic revision of rules used to guide the generalisation process in systems based on a trial and error strategy. International Journal of Geographical Information Science, 25(12), 1971–1999. doi: 10.1080/13658816.2011.566568
  • Touya, G. (2010). A road network selection process based on data enrichment and structure detection. Transactions in GIS, 14(5), 595–614. doi: 10.1111/j.1467-9671.2010.01215.x
  • Touya, G. (2015). Lessons learned from research on multimedia summarization. In Proceedings of 18th ICA workshop on generalisation and multiple representation, Rio de Janeiro, Brazil.
  • Touya, G. (2017). Vers l'automatisation de la production de cartes. Habilitation thesis, Université Paris Est.
  • Touya, G. and Dumont, M. (2017). Progressive block graying and landmarks enhancing as intermediate representations between buildings and urban areas. In Proceedings of 20th ICA workshop on generalisation and multiple representation, Washington, DC, USA.
  • Touya, G., Bucher, B., Falquet, G., Jaara, K., & Steiniger, S. (2014). Modelling geographic relationships in automated environments. In D. Burghardt, C. Duchêne, & W. Mackaness (Eds.), Abstracting geographic information in a data rich world (pp. 53–82). Berlin: Springer.
  • Touya, G., Lokhat, I., & Duchêne, C. (2019). CartAGen: an Open Source Research Platform for Map Generalization. ICC’19.
  • Weibel, R., Keller, S., & Reichenbacher, T. (1995). Overcoming the knowledge acquisition bottleneck in map generalization: The role of interactive systems and computational intelligence. In A. U. Frank, & W. Kuhn (Eds.), Spatial information theory, a theoretical basis for GIS (pp. 139–156). Berlin: Springer.
  • Xu, Y., Chen, Z., Xie, Z., & Wu, L. (2017). Quality assessment of building footprint data using a deep autoencoder network. International Journal of Geographical Information Science, 31(10), 1929–1951. doi: 10.1080/13658816.2017.1341632
  • Zhou, Q., & Li, Z. (2016). Empirical determination of geometric parameters for selective omission in a road network. International Journal of Geographical Information Science, 30(2), 263–299. doi: 10.1080/13658816.2015.1085538
  • Zhou, Q., & Li, Z. (2017). A comparative study of various supervised learning approaches to selective omission in a road network. The Cartographic Journal, 54(3), 254–264. doi: 10.1179/1743277414Y.0000000083

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.