1,860
Views
1
CrossRef citations to date
0
Altmetric
Articles

Potential of eye-tracking for interactive geovisual exploration aided by machine learning

ORCID Icon & ORCID Icon
Pages 150-172 | Received 23 Feb 2022, Accepted 14 Nov 2022, Published online: 10 Jan 2023

References

  • Agarwal, P., & Skupin, A. (2008). Self-organising maps: Applications in geographic information science. Wiley.
  • Allen, G. L. (2020). Applied spatial cognition: From research to cognitive technology. Psychology Press.
  • Andrienko, G. L., & Andrienko, N. V. (1999). Interactive maps for visual data exploration. International Journal of Geographical Information Science, 13(4), 355–374. https://doi.org/10.1080/136588199241247
  • Andrienko, N., Andrienko, G., Adilova, L., Wrobel, S., & Rhyne, T.-M. (2022). Visualanalytics for human-centered machine learning. IEEE Computer Graphics and Applications, 42(1), 123–133. https://doi.org/10.1109/MCG.2021.3130314
  • Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: Fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1), 3–31. https://doi.org/10.1016/S0167-7012(00)00201-3
  • Basole, R. C., Stork, A., & Basole, R. C. (2019). Visualization 4.0. IEEE Computer Graphics and Applications, 39(6), 8–16. https://doi.org/10.1109/MCG.2019.2937475
  • Bertin, J. (1967). Semiology of graphics (translation by WJ berg 1983). University of Wisconsin Press.
  • Bloom, B. S. (1956). Taxonomy of educational objectives. Vol. 1: Cognitive domain. McKay. 20(24), 1.
  • Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2014). Spectral networks and locally connected networks on graphs. ArXiv:1312.6203 [Cs]. http://arxiv.org/abs/1312.6203.
  • Choi, D., Shah, C., & Singh, V. (2016). Probing the interconnections between geo-exploration and information exploration behavior. In Proceedings of the 2016 ACM international joint conference on pervasive and ubiquitous computing (pp. 1170–1175).
  • Çöltekin, A., Bleisch, S., Andrienko, G., & Dykes, J. (2017). Persistent challenges in geovisualization – a community perspective. International Journal of Cartography, 3(sup1), 115–139. https://doi.org/10.1080/23729333.2017.1302910
  • Çöltekin, A., Fabrikant, S. I., & Lacayo, M. (2010). Exploring the efficiency of users’ visual analytics strategies based on sequence analysis of eye movement recordings. International Journal of Geographical Information Science, 24(10), 1559–1575. https://doi.org/10.1080/13658816.2010.511718
  • Çöltekin, A., Janetzko, H., & Fabrikant, S. (2018). Geovisualization. Geographic Information Science & Technology Body of Knowledge. Q2. https://doi.org/10.22224/gistbok/2018.2.
  • Ding, P., Zhang, Y., Deng, W.-J., Jia, P., & Kuijper, A. (2018). A light and faster regional convolutional neural network for object detection in optical remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 141, 208–218. https://doi.org/10.1016/j.isprsjprs.2018.05.005
  • Duchowski, A. T. (2017). Eye tracking methodology: Theory and practice. Springer.
  • Eidelman, S., & Crandall, C. S. (2009). A psychological advantage for the status quo. In J. T. Jost, A. C. Kay & H. Thorisdottir (Eds.), Social and psychological bases of ideology and system justification (pp. 85–106). Oxford University Press.
  • Fabrikant, S. I., Hespanha, S. R., & Hegarty, M. (2010). Cognitively inspired and perceptually salient graphic displays for efficient spatial inference making. Annals of the Association of American Geographers, 100(1), 13–29. https://doi.org/10.1080/00045600903362378
  • Flink, H.-M., Oksanen, J., Pyysalo, U., Rönneberg, M., & Sarjakoski, L. T. (2011). Usability evaluation of a map-based multi-publishing service. In A. Ruas (Ed.), Advances in cartography and GIScience (Volume 1, pp. 239–257). Springer.
  • Fuchs, R., Waser, J., & Groller, M. E. (2009). Visual human+machine learning. IEEE Transactions on Visualization and Computer Graphics, 15(6), 1327–1334. https://doi.org/10.1109/TVCG.2009.199
  • Gao, S. (2021). Geospatial artificial intelligence (GeoAI). Oxford University Press.
  • Garlandini, S., & Fabrikant, S. I. (2009). Evaluating the effectiveness and efficiency of visual variables for geographic information visualization. In K. S. Hornsby, C. Claramunt, M. Denis, & G. Ligozat (Eds.), Spatial information theory (Volume 5756, pp. 195–211). Springer. https://doi.org/10.1007/978-3-642-03832-7_12.
  • Göbel, F. (2021). Visual attentive user interfaces for feature-rich environments [Doctoral Thesis], ETH Zurich. https://doi.org/10.3929/ethz-b-000513243.
  • Göbel, F., Kiefer, P., & Raubal, M. (2019). Featureyetrack: Automatic matching of eye tracking data with map features on interactive maps. GeoInformatica, 23(4), 663–687. https://doi.org/10.1007/s10707-019-00344-3
  • Göbel, F., Kurzhals, K., Schinazi, V. R., Kiefer, P., & Raubal, M. (2020). Gaze-adaptive lenses for feature-rich information & spaces. ACM Symposium on Eye Tracking Research and Applications (pp. 1–8). https://doi.org/10.1145/3379155.3391323.
  • Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., & Chen, T. (2018). Recent advances in convolutional neural networks. Pattern Recognition, 77, 354–377. https://doi.org/10.1016/j.patcog.2017.10.013
  • Han, J., Pei, J., & Kamber, M. (2011). Data mining: Concepts and techniques. Elsevier.
  • Haunert, J.-H., & Sester, M. (2008). Area collapse and road centerlines based on straight skeletons. GeoInformatica, 12(2), 169–191. https://doi.org/10.1007/s10707-007-0028-x
  • He, S., Bastani, F., Jagwani, S., Park, E., Abbar, S., Alizadeh, M., Balakrishnan, H., Chawla, S., Madden, S., & Sadeghi, M. A. (2020). Roadtagger: Robust road attribute inference with graph neural networks. Proceedings of the AAAI Conference on Artificial Intelligence, 34(07), 10965–10972. https://doi.org/10.1609/aaai.v34i07.6730
  • Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T., & Lovelace, K. (2006). Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. Intelligence, 34(2), 151–176. https://doi.org/10.1016/j.intell.2005.09.005
  • Heinzle, F., & Anders, K. H. (2007). Characterising space via pattern recognition techniques: identifying patterns in road networks. In Generalisation of geographic information (pp. 233–253). Elsevier Science BV. https://doi.org/10.1016/B978-008045374-3/50014-4
  • Heinzle, F., Anders, K. H., & Sester, M. (2007, June). Automatic detection of pattern in road networks-methods and evaluation. In J. Schiewe & M. Hahn (Eds.), Proc. of joint workshop visualization and exploration of geospatial data, Stuttgart, Germany, 27–29 June 2007. www.isprs.org/proceedings/XXXVI/4-W45/PDF/21_Heinzle.pdf
  • Henaff, M., Bruna, J., & LeCun, Y. (2015). Deep convolutional networks on graph-structured data. ArXiv:1506.05163 [Cs]. http://arxiv.org/abs/1506.05163.
  • Hewitson, B. C. (2008). Climate analysis, modelling, and regional downscaling using self-organizing maps. In P. Agarwal & A. Skupin (Eds.), Self-organising maps: Applications in geographic information science (pp. 137–163). Wiley.
  • Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., & Van de Weijer, J. (2011). Eye tracking: A comprehensive guide to methods and measures. OUP.
  • Hu, S., Gao, S., Wu, L., Xu, Y., Zhang, Z., Cui, H., & Gong, X. (2021). Urban function classification at road segment level using taxi trajectory data: A graph convolutional neural network approach. Computers, Environment and Urban Systems, 87, 101619. https://doi.org/10.1016/j.compenvurbsys.2021.101619
  • IBM Blog. Retrieved July 4, 2021, from https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning
  • Idreos, S., Papaemmanouil, O., & Chaudhuri, S. (2015). Overview of data exploration techniques. In Proceedings of the 2015 ACM SIGMOD international conference on management of data (pp. 277–281).
  • Janowicz, K., Gao, S., McKenzie, G., Hu, Y., & Bhaduri, B. (2020). GeoAI: Spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond. International Journal of Geographical Information Science, 34(4), 625–636. https://doi.org/10.1080/13658816.2019.1684500
  • Jäkel, F., Singh, M., Wichmann, F. A., & Herzog, M. H. (2016). An overview of quantitative approaches in gestalt perception. Vision Research, 126, 3–8. https://doi.org/10.1016/j.visres.2016.06.004
  • Jacob, R. J. (1990, March). What you look at is what you get: eye movement-based interaction techniques. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 11–18). https://doi.org/10.1145/97243.97246
  • Jokinen, J., Acharya, A., Uzair, M., Jiang, X., & Oulasvirta, A. (2021). Touchscreen typing As optimal supervisory control. In Proceedings of the 2021 CHI conference on human factors in computing systems (pp. 1–14). https://doi.org/10.1145/3411764.3445483
  • Kahneman, D., Knetsch, J. L., & Thaler, R. H. (1991). The endowment effect, loss aversion, and status quo bias: Anomalies. Journal of Economic Perspectives, 5(1), 193–206. https://doi.org/10.1257/jep.5.1.193
  • Keskin, M. (2020). Exploring the cognitive processes of map users employing eye tracking and EEG [PhD Thesis], Ghent University.
  • Keskin, M., & Kettunen, P. (2021). Designing AI-assisted interactive map displays to explore spatial information. Abstracts of the ICA, 3, 1–2. https://doi.org/10.5194/ica-abs-3-148-2021
  • Keskin, M., Ooms, K., Dogru, A. O., & De Maeyer, P. (2018). Digital sketch maps and eye tracking statistics as instruments to obtain insights into spatial cognition. Journal of Eye Movement Research, 11(3). https://doi.org/10.16910/jemr.11.3.4.
  • Kettunen, P. (2014). Analysing landmarks in nature and elements of geospatial images to support wayfinding. Finnish Geodetic Institute.
  • Kettunen, P., & Oksanen, J. (2019). Motion of animated streamlets appears to surpass their graphical alterations in human visual detection of vector field maxima. Cartography and Geographic Information Science, 46(6), 489–501. https://doi.org/10.1080/15230406.2018.1553113
  • Kiefer, P., Giannopoulos, I., Raubal, M., & Duchowski, A. (2017). Eye tracking for spatial research: Cognition, computation, challenges. Spatial Cognition & Computation, 17(1–2), 1–19. https://doi.org/10.1080/13875868.2016.1254634
  • Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph convolutional networks. ArXiv:1609.02907 [Cs, Stat]. http://arxiv.org/abs/1609.02907.
  • Knapp, L. (1995). A task analysis approach to the visualization of geographic data. In T. L. Nyerges, D. M. Mark, R. Laurini, & M.J. Egenhofer (Eds.), Cognitive aspects of human-computer interaction for geographic information systems (pp. 355–371). Springer.
  • Koua, E. L., & Kraak, M.-J. (2004). Geovisualization to support the exploration of large health and demographic survey data. International Journal of Health Geographics, 13. https://doi.org/10.1186/1476-072X-3-12
  • Kulhavy, R. W., & Stock, W. A. (1996). How cognitive maps are learned and remembered. Annals of the Association of American Geographers, 86(1), 123–145. https://doi.org/10.1111/j.1467-8306.1996.tb01748.x
  • Kumar, B., Pandey, G., Lohani, B., & Misra, S. C. (2019). A multi-faceted CNN architecture for automatic classification of mobile LiDAR data and an algorithm to reproduce point cloud samples for enhanced training. ISPRS Journal of Photogrammetry and Remote Sensing, 147, 80–89. https://doi.org/10.1016/j.isprsjprs.2018.11.006
  • Kwok, T. C. K., Kiefer, P., Schinazi, V. R., Adams, B., & Raubal, M. (2019). Gaze-guided narratives: Adapting audio guide content to gaze in virtual and real environments. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1–12). https://doi.org/10.1145/3290605.3300721.
  • LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., & Jackel, L. (1989). Handwritten digit recognition with a back-propagation network. Advances in Neural Information Processing Systems, 2, 396–404.
  • Leonard, T. C. (2008). Richard H. Thaler, Cass R. Sunstein, Nudge: Improving decisions about health, wealth, and happiness. Constitutional Political Economy, 19(4), 356–360. https://doi.org/10.1007/s10602-008-9056-2
  • Ma, L., Li, Y., Li, J., Tan, W., Yu, Y., & Chapman, M. A. (2021). Multi-scale point-wise convolutional neural networks for 3D object segmentation from LiDAR point clouds in large-scale environments. IEEE Transactions on Intelligent Transportation Systems, 22(2), 821–836. https://doi.org/10.1109/TITS.2019.2961060
  • MacEachren, A. (1992). Visualizing uncertain information. Cartographic Perspective, 13. https://doi.org/10.14714/CP13.1000
  • MacEachren, A. M., & Kraak, M.-J. (1997). Exploratory cartographic visualization: Advancing the agenda. Computers & Geosciences, 23(4), 335–343. Elsevier https://doi.org/10.1016/S0098-3004(97)00018-6
  • Meng, L. (2005). Ego centres of mobile users and egocentric map design. In L. Meng, T. Reichenbacher, & A. Zipf (Eds.), Map-based mobile services (pp. 87–105). Springer.
  • Meng, L., & Reichenbacher, T. (2005). Map-based mobile services. In L. Meng, T. Reichenbacher, & A. Zipf (Eds.), Map-based mobile services: Theories, methods and implementations (pp. 1–10). Springer. https://doi.org/10.1007/3-540-26982-7_1
  • Miura, K. (2016). Eye fixation tendency on wayfinding in street space with heavy traffic conditions: A study on the eye fixation in wayfinding in the streets of Roma (part 2). Journal of Architecture and Planning, 81(722), 959–969. https://doi.org/10.3130/aija.81.959
  • Montello, D., & Freundschuh, S. (2005). Cognition of geographic information. In R. B. McMaster & E. L. Usery (Eds.), A research agenda for geographic information science. CRC Press.
  • Morrison, J. L. (1974). A theoretical framework for cartographic generalization with the emphasis on the process of symbolization. International Yearbook of Cartography, 14(1974), 115–127.
  • Nivala, A.-M., Brewster, S., & Sarjakoski, T. L. (2008). Usability evaluation of web mapping sites. The Cartographic Journal, 45(2), 129–138. https://doi.org/10.1179/174327708X305120
  • Norman, D. A. (1986). User centered system design: New perspectives on human-computer interaction. Xiii, 186 p. : Col. Ill. Hillsdale, NJ: Lawrence Erlbaum Assoc. Includes Bibliography and Index. http://papers.cumincad.org/cgi-bin/works/Show&_id=caadria2010_044/paper/aec5.
  • Ooms, K., De Maeyer, P., & Fack, V. (2015). Listen to the map user: cognition, memory, and expertise. The Cartographic Journal, 52(1), 3–19. https://doi.org/10.1179/1743277413Y.0000000068
  • Ooms, K. (2012). Maps, how do users see them?: An in depth investigation of the map users’ cognitive processes [Dissertation], Ghent University. http://hdl.handle.net/1854/LU-3103344
  • O’Shea, K., & Nash, R. (2015). An Introduction to Convolutional Neural Networks. ArXiv:1511.08458 [Cs]. http://arxiv.org/abs/1511.08458.
  • Otterlo, M. V., & Wiering, M. (2012). Reinforcement learning and Markov decision processes. In M. Wiering & M. van Otterlo (Eds.), Reinforcement learning. Adaptation, learning, and optimization (pp. 3–42). Springer.
  • Palka, G., Serrhini, K., & Andrieu, D. (2018). How evacuation maps work: Comparison of stakeholders’ visual strategies. International Journal of Cartography, 4(1), 25–48. https://doi.org/10.1080/23729333.2018.1434603
  • Pope, P. E., Kolouri, S., Rostami, M., Martin, C. E., & Hoffmann, H. (2019). Explainability methods for graph convolutional neural networks. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 10764–10773). https://doi.org/10.1109/CVPR.2019.01103.
  • Putto, K., Kettunen, P., Torniainen, J., Krause, C. M., & Tiina Sarjakoski, L. (2014). Effects of cartographic elevation visualizations and map-reading tasks on eye movements. The Cartographic Journal, 51(3), 225–236. https://doi.org/10.1179/1743277414Y.0000000087
  • Raubal, M. (2009). Cognitive engineering for geographic information science: Cognitive engineering for geographic information science. Geography Compass, 3(3), 1087–1104. https://doi.org/10.1111/j.1749-8198.2009.00224.x
  • Richter, K.-F., Tomko, M., & Cöltekin, A. (2015). Are we there yet? Spatial cognitive engineering for situated human-computer interaction. https://doi.org/10.5167/UZH-118002.
  • Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386. https://doi.org/10.1037/h0042519
  • Roth, R. E. (2017). Visual variables. In D. Richardson, N. Castree, M. F. Goodchild, A. Kobayashi, W. Liu, & R. A. Marston (Eds.), International encyclopedia of geography: People, the earth, environment and technology (pp. 1–11). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118786352.wbieg0761
  • Rudi, D., Kiefer, P., Giannopoulos, I., & Raubal, M. (2020). Gaze-based interactions in the cockpit of the future: A survey. Journal on Multimodal User Interfaces, 14(1), 25–48. https://doi.org/10.1007/s12193-019-00309-8
  • Samuelson, W., & Zeckhauser, R. (1988). Status quo bias in decision making. Journal of Risk and Uncertainty, 1(1), 7–59. https://doi.org/10.1007/BF00055564
  • Sen, A., Gokgoz, T., & Sester, M. (2014). Model generalization of two different drainage patterns by self-organizing maps. Cartography and Geographic Information Science, 41(2), 151–165. https://doi.org/10.1080/15230406.2013.877231
  • Sester, M. (2008). Self-organizing maps for density-preserving reduction of objects in cartographic generalization. In P. Agarwal & A. Skupin (Eds.), Self-organising maps: Applications in geographic information science (pp. 107–120). Wiley Online Library.
  • Shneiderman, B. (2002). Inventing discovery tools: Combining information visualization with data mining. Information Visualization, 1(1), 5–12. https://doi.org/10.1057/palgrave.ivs.9500006
  • Skupin, A. (2008). Visualizing human movement in attribute space. In P. Agarwal & A. Skupin (Eds.), Self-organising maps: Applications in geographic information science (pp. 121–135). Wiley.
  • Skupin, A., & Agarwal, P. (2008). Introduction: What is a self-organizing map? In P. Agarwal & A. Skupin (Eds.), Self-organising maps: Applications in geographic information science (pp. 1–20). Wiley Online Library.
  • Slocum, T. A., Blok, C., Jiang, B., Koussoulakou, A., Montello, D. R., Fuhrmann, S., & Hedley, N. R. (2001). Cognitive and usability issues in geovisualization. Cartography and Geographic Information Science, 28(1), 61–75. https://doi.org/10.1559/152304001782173998
  • Thorndyke, P. W., & Stasz, C. (1980). Individual differences in procedures for knowledge acquisition from maps. Cognitive psychology, 12(1), 137–175. https://doi.org/10.1016/0010-0285(80)90006-7
  • Tobii Concept Validation Tool. Retrieved September 8, 2021, from https://tech.tobii.com/get-started/
  • Veer, R., van ‘t Bloem, P., & Folmer, E. (2019). Deep learning for classification tasks on geospatial vector polygons. ArXiv:1806.03857 [Cs, Stat]. http://arxiv.org/abs/1806.03857.
  • Vidal, M., Bulling, A., & Gellersen, H. (2013). Pursuits: Spontaneous interaction with displays based on smooth pursuit eye movement and moving targets. Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 439–448).
  • Wardlaw, J. (2010). Principles of interaction. In M. (Muki). Haklay (Ed.), Interacting with geospatial technologies (pp. 179–198). Wiley Online Library.
  • Wertheimer, M. (1923). A brief introduction to gestalt, identifying key theories and principles. Psychologische Forschung, 4(1), 301–350. https://doi.org/10.1007/BF00410640
  • Xu, F., Uszkoreit, H., Du, Y., Fan, W., Zhao, D., & Zhu, J. (2019, October). Explainable AI: A brief survey on history, research areas, approaches and challenges. In J. Tang, M. Y. Kan, D. Zhao, S. Li, & H. Zan (Eds.), CCF international conference on natural language processing and Chinese computing (pp. 563–574). Springer.
  • Yan, J., & Thill, J.-C. (2008). Visual exploration of spatial interaction data with self-organizing maps. In P. Agarwal & A. Skupin (Eds.), Self-organising maps (pp. 67–85). Wiley Online Library.
  • Yan, X., Ai, T., Yang, M., & Yin, H. (2019). A graph convolutional neural network for classification of building patterns using spatial vector data. ISPRS Journal of Photogrammetry and Remote Sensing, 150, 259–273. https://doi.org/10.1016/j.isprsjprs.2019.02.010
  • Zhang, X., Tan, X., Chen, G., Zhu, K., Liao, P., & Wang, T. (2022). Object-based classification framework of remote sensing images With graph convolutional networks. IEEE Geoscience and Remote Sensing Letters, 19, 1–5. https://doi.org/10.1109/LGRS.2021.3072627