624
Views
2
CrossRef citations to date
0
Altmetric
Articles

Missing the city for buildings? A critical review of pan-scalar map generalization and design in contemporary zoomable maps

, &
Pages 255-285 | Received 17 Jul 2022, Accepted 23 Nov 2022, Published online: 10 Jan 2023

References

  • Alvina, J., Appert, C., Chapuis, O., & Pietriga, E. (2014). RouteLens: Easy route following for map applications. In Proceedings of the 2014 international working conference on advanced visual interfaces (pp. 125–128). ACM.
  • Balley, S., Parent, C., & Spaccapietra, S. (2004, June). Modelling geographic data with multiple representations. International Journal of Geographical Information Science, 18(4), 327–352. https://doi.org/10.1080/13658810410001672881
  • Baudisch, P., & Rosenholtz, R. (2003). Halo: A technique for visualizing off-screen objects. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 481–488). ACM.
  • Bederson, B. B., & Boltman, A. (1999, October). Does animation help users build mental maps of spatial information? In Proceedings 1999 IEEE symposium on information visualization (InfoVis'99) (pp. 28–35). https://doi.org/10.1109/INFVIS.1999.801854
  • Bederson, B. B., & Hollan, J. D. (1994). Pad++: A zooming graphical interface for exploring alternate interface physics pad++: A zooming graphical interface for exploring alternate interface physics. In Proceedings of the 7th annual ACM symposium on user interface software and technology (pp. 17–26). ACM.
  • Bernier, E., & Bédard, Y. (2007). A data warehouse strategy for on-demand multiscale mapping. In W. A. Mackaness, A. Ruas, & L. T. Sarjakoski (Eds.), Generalisation of geographic information (pp. 177–198). Elsevier.
  • Bier, E. A., Stone, M. C., Pier, K., Buxton, W., & DeRose, T. D. (1993). Toolglass and magic lenses: The see-through interface. In Proceedings of the 20th annual conference on computer graphics and interactive techniques (pp. 73–80). ACM.
  • Biniek, S., Touya, G., & Rouffineau, G. (2019, July). Fifty shades of roboto: Text design choices and categories in multi-scale maps. In Advances in cartography and GIScience of the international cartographic association 1, 2. https://doi.org/10.5194/ica-adv-1-2-2019
  • Bonanni, L., Xiao, X., Hockenberry, M., Subramani, P., Ishii, H., Seracini, M., & Schulze, J. (2009). Wetpaint: Scraping through multi-layered images. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 571–574). ACM.
  • Brewer, C. A., & Buttenfield, B. P. (2006, June). Mastering map scale: Formalizing guidelines for multi-scale map design. In Proceedings of autocarto 2006.
  • Brewer, C. A., & Buttenfield, B. P. (2007, January). Framing guidelines for multi-scale map design using databases at multiple resolutions. Cartography and Geographic Information Science, 34(1), 3–15. https://doi.org/10.1559/152304007780279078
  • Brewer, C. A., & Buttenfield, B. P. (2009, April). Mastering map scale: Balancing workloads using display and geometry change in multi-scale mapping. GeoInformatica, 14(2), 221–239. https://doi.org/10.1007/s10707-009-0083-6
  • Buttenfield, B. P. (1989, October). Scale-dependence and self-similarity in cartographic lines. Cartographica: The International Journal for Geographic Information and Geovisualization, 26, 79–100. https://doi.org/10.3138/4678-60MR-M036-4732
  • Casati, R., Smith, B., & Varzi, A. (1998, January). Ontological tools for geographic representation.
  • Cecconi, A., & Galanda, M. (2002, December). Adaptive zooming in web cartography. Computer Graphics Forum, 21(4), 787–799. https://doi.org/10.1111/cgf.2002.21.issue-4
  • Chaudhry, O. Z., & Mackaness, W. A. (2007). Utilising partonomic information in the creation of hierarchical geographies. In ICA workshop on generalisation and multiple representation.
  • Chimani, M., van Dijk, T. C., & Haunert, J. (2014). How to eat a graph: Computing selection sequences for the continuous generalization of road networks. In Proceedings of the 22st ACM SIGSPATIAL international conference on advances in geographic information systems (pp. 243–252).
  • Cockburn, A., Karlson, A., & Bederson, B. B. (2009, January). A review of overview+detail, zooming, and focus+context interfaces a review of overview+detail, zooming, and focus+context interfaces. ACM Computing Surveys, 41(1), 1–31. https://doi.org/10.1145/1456650.1456652
  • Cockburn, A., & Savage, J. (2004). Comparing speed-dependent automatic zooming with traditional scroll, pan and zoom methods. In E. O'Neill, P. Palanque, & P. Johnson (Eds.), People and computers XVII – designing for society (pp. 87–102). Springer.
  • Couclelis, H. (1992). Location, place, region, and space. Geography's Inner Worlds, 2, 15–233.
  • Couclelis, H. (1998, January). Worlds of information: The geographic metaphor in the visualization of complex information. Cartography and Geographic Information Systems, 25(4), 209–220. https://doi.org/10.1559/152304098782383034
  • Couclelis, H., Golledge, R. G., Gale, N., & Tobler, W. (1987, June). Exploring the anchor-point hypothesis of spatial cognition. Journal of Environmental Psychology, 7(2), 99–122. https://doi.org/10.1016/S0272-4944(87)80020-8
  • Danciger, J., Devadoss, S. L., Mugno, J., Sheehy, D., & Ward, R. (2009). Shape deformation in continuous map generalization. GeoInformatica, 13(2), 203–221. https://doi.org/10.1007/s10707-008-0049-0
  • Dickmann, F., Edler, D., Bestgen, A. K., & Kuchinke, L. (2017, June). Exploiting illusory grid lines for object-location memory performance in urban topographic maps. The Cartographic Journal, 54(3), 242–253. https://doi.org/10.1080/00087041.2016.1236509
  • Downs, R. M., & Stea, D. (2011, April). Cognitive maps and spatial behaviour: Process and products. In M. Dodge, R. Kitchin, & C. Perkins (Eds.), The map reader (1st ed., pp. 312–317). Wiley.
  • Dumont, M., Touya, G., & Duchêne, C. (2017, July). Alternative transitions between existing representations in multi-scale maps. In Proceedings of the ICA (Vol. 1, p. 33). Copernicus Publications.
  • Dumont, M., Touya, G., & Duchêne, C. (2020, January). Designing multi-scale maps: Lessons learned from existing practices. International Journal of Cartography, 6(1), 121–151. https://doi.org/10.1080/23729333.2020.1717832
  • Elmqvist, N., Moere, A. V., Jetter, H.C., Cernea, D., Reiterer, H., & Jankun-Kelly, T. J. (2011). Fluid interaction for information visualization. Information Visualization, 10(4), 327–340. https://doi.org/10.1177/1473871611413180
  • Elmqvist, N., Riche, Y., Henry-Riche, N., & Fekete, J. D. (2010, May). Mélange: Space folding for visual exploration. IEEE Transactions on Visualization and Computer Graphics, 16(3), 468–483. https://doi.org/10.1109/TVCG.2009.86
  • Frank, A., & Timpf, S. (1994, November). Multiple representations for cartographic objects in a multi-scale tree–an intelligent graphical zoom. Computers & Graphics, 18, 823–829. https://doi.org/10.1016/0097-8493(94)90008-6
  • Furnas, G. W., & Bederson, B. B. (1995, May). Space-scale diagrams: Understanding multiscale interfaces. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 234–241). ACM Press/Addison-Wesley Publishing Co.
  • Girres, J. F., & Touya, G. (2014, September). Cartographic generalisation aware of multiple representations. In M. Duckham, K. Stewart, & E. Pebesma (Eds.), Proceedings of GIScience 2014 – poster session.
  • Golledge, R., Jacobson, D., Kitchin, R., & Blades, M. (2000). Cognitive maps, spatial abilities, and human wayfinding. Geographical Review of Japan, Series B., 73(2), 93–104. https://doi.org/10.4157/grj1984b.73.93
  • Gröbe, M., & Burghardt, D. (2019a, July). Verification of multi-scale map design. In Proceedings of the abstraction, scale and perception workshop. https://doi.org/10.5194/ica-abs-1-100-2019
  • Gröbe, M., & Burghardt, D. (2019b, July). Developing and evaluating multi-scale map styles: Creating a multi-scale legend. Abstracts of the ICA, 1, 100. https://doi.org/10.5194/ica-abs-1-100-2019
  • Gröbe, M., & Burghardt, D. (2021, September). Scale-dependent point selection methods for web maps. KN – Journal of Cartography and Geographic Information, 71(3), 143–154. https://doi.org/10.1007/s42489-021-00079-y
  • Grünreich, D. (1985). Ein vorschlag zum aufbau einer grossmassstäbigen topographischkartographischenDatenbank unter besonderer berücksichtigung der grundrissdateides ALK-Systems. Nachrichten Aus Dem Karten- Und Vermessungswesen, Series I, 95, 55.
  • Haklay, M., Singleton, A., & Parker, C. (2008). Web mapping 2.0: The neogeography of the geoWeb. Geography Compass, 2(6), 2011–2039. https://doi.org/10.1111/j.1749-8198.2008.00167.x
  • Harrie, L., Sarjakoski, L. T., & Lehto, L. (2002). A mapping function for variable-scale maps in small-display cartography. Journal of Geospatial Engineering, 2(3), 111–123.
  • Haunert, J. H., & Sering, L. (2011, December). Drawing road networks with focus regions. IEEE Transactions on Visualization and Computer Graphics, 17(12), 2555–2562. https://doi.org/10.1109/TVCG.2011.191
  • Hollenstein, D., & Bleisch, S. (2021, September). Gaining overview with transient focus+context maps gaining overview with transient focus+context maps. International Journal of Cartography, 1–15. https://doi.org/10.1080/23729333.2021.1960139
  • Hornbaek, K., Bederson, B. B., & Plaisant, C. (2002, December). Navigation patterns and usability of zoomable user interfaces with and without an overview. ACM Transactions on Computer-Human Interaction, 9(4), 362–389. https://doi.org/10.1145/586081.586086
  • Huang, L., Ai, T., Van Oosterom, P., Yan, X., & Yang, M. (2017, July). A matrix-based structure for vario-scale vector representation over a wide range of map scales: The case of river network data. ISPRS International Journal of Geo-Information, 6(7), 218. https://doi.org/10.3390/ijgi6070218
  • Igarashi, T., & Hinckley, K. (2000, November). Speed-dependent automatic zooming for browsing large documents. In Proceedings of the 13th annual ACM symposium on User interface software and technology (pp. 139–148). Association for Computing Machinery.
  • Javed, W., Ghani, S., & Elmqvist, N. (2012a, May). GravNav: Using a gravity model for multi-scale navigation. In Proceedings of the international working conference on advanced visual interfaces (pp. 217–224). Association for Computing Machinery.
  • Javed, W., Ghani, S., & Elmqvist, N. (2012b). Polyzoom: Multiscale and multifocus exploration in 2D visual spaces. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 287–296). ACM.
  • Jul, S., & Furnas, G. W. (1998, November). Critical zones in desert fog: Aids to multiscale navigation. In Proceedings of the 11th annual ACM symposium on user interface software and technology (pp. 97–106). Association for Computing Machinery.
  • Kitchin, R. (1994, March). Cognitive maps: What are they and why study them? Journal of Environmental Psychology, 14, 1–19. https://doi.org/10.1016/S0272-4944(05)80194-X
  • Kosara, R., Miksch, S., & Hauser, H. (2002, January). Focus+context taken literally focus+context taken literally. IEEE Computer Graphics and Applications, 22(1), 22–29. https://doi.org/10.1109/38.974515
  • Lekschas, F., Behrisch, M., Bach, B., Kerpedjiev, P., Gehlenborg, N., & Pfister, H. (2020, January). Pattern-driven navigation in 2D multiscale visualizations with scalable insets. IEEE Transactions on Visualization and Computer Graphics, 26(1), 611–621. https://doi.org/10.1109/TVCG.2019.2934555
  • Li, H. (2004, December). Design of multi-scale and dynamic maps for land vehicle navigation. The Cartographic Journal, 41(3), 265–270. https://doi.org/10.1179/000870404X13896
  • Li, J., Ai, T., Liu, P., & Yang, M. (2017, August). Continuous scale transformations of linear features using simulated annealing-based morphing. ISPRS International Journal of Geo-Information, 6(8), 242. https://doi.org/10.3390/ijgi6080242
  • Li, J., Li, X., & Xie, T. (2017, June). Morphing of building footprints using a turning angle function. ISPRS International Journal of Geo-Information, 6(6), 173. https://doi.org/10.3390/ijgi6060173
  • Liu, W., D'Oliveira, R. L., Beaudouin-Lafon, M., & Rioul, O. (2017). BIGnav: Bayesian information gain for guiding multiscale navigation. In Proceedings of the 2017 CHI conference on human factors in computing systems (pp. 5869–5880). Association for Computing Machinery.
  • Lloyd, R. (1989). Cognitive maps: Encoding and decoding information. Annals of the Association of American Geographers, 79(1), 101–124. https://doi.org/10.1111/j.1467-8306.1989.tb00253.x
  • Lobo, M. J., Pietriga, E., & Appert, C. (2015). An evaluation of interactive map comparison techniques. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 3573–3582). ACM.
  • Müller, J. C. (1990). Rule based generalization: Potentials and impediments. In Proceedings of 4th international symposium on spatial data handling (pp. 317–334).
  • MacEachren, A. M. (1991, December). The role of maps in spatial knowledge acquisition. The Cartographic Journal, 28(2), 152–162. https://doi.org/10.1179/caj.1991.28.2.152
  • Mackaness, W. A. (2007, January). Chapter 1 – understanding geographic space. In W. A. Mackaness, A. Ruas, & L. T. Sarjakoski (Eds), Generalisation of geographic information (pp. 1–10). Elsevier Science B.V.
  • Mark, D. M., Freksa, C., Hirtle, S. C., Lloyd, R., & Tversky, B. (1999, December). Cognitive models of geographical space. International Journal of Geographical Information Science, 13(8), 747–774. https://doi.org/10.1080/136588199241003
  • Merleau-Ponty, M. (1945). Phénoménologie de la perception.
  • Moscovich, T., Chevalier, F., Henry, N., Pietriga, E., & Fekete, J. D. (2009, April). Topology-aware navigation in large networks. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 2319–2328). Association for Computing Machinery.
  • Nöllenburg, M., Merrick, D., Wolff, A., & Benkert, M. (2008, July). Morphing polylines: A step towards continuous generalization. Computers, Environment and Urban Systems, 32(4), 248–260. https://doi.org/10.1016/j.compenvurbsys.2008.06.004
  • Paillé, P., & Mucchielli, A. (2012). Chapitre 9 – L'analyse en mode écriture. In L'analyse qualitative en sciences humaines et sociales (pp. 183–206). Armand Colin.
  • Peng, D., Haunert, J. H., Wolff, A., & Hurter, C. (2013, August). Morphing polylines based on least-squares adjustment. In Proceedings of 16th ICA workshop on generalisation and multiple representation.
  • Peng, D., & Touya, G. (2017, October). Continuously generalizing buildings to built-up areas by aggregating and growing. In Proceedings of 3rd ACM SIGSPATIAL workshop on smart cities and urban analytics (UrbanGIS'17). ACM.
  • Peng, D., Wolff, A., & Haunert, J. H. (2016). Continuous generalization of administrative boundaries based on compatible triangulations. In T. Sarjakoski, M. Y. Santos, & L. T. Sarjakoski (Eds.), Geospatial data in a changing world (pp. 399–415). Springer International Publishing.
  • Peng, D., Wolff, A., & Haunert, J. H. (2020, October). Finding optimal sequences for area aggregation – A⋆ vs. integer linear programming. In ACM transactions on spatial algorithms and systems (TSAS).
  • Piaget, J., & Inhelder, B. (1948). La représentation de l'espace chez l'enfant [Representation of space by the child]. Presses Universitaires de France, Pages: 581.
  • Pietriga, E., Appert, C., & Beaudouin-Lafon, M. (2007). Pointing and beyond: An operationalization and preliminary evaluation of multi-scale searching. In CHI'07: Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 1215–1224). ACM Press.
  • Pietriga, E., Bau, O., & Appert, C. (2010). Representation-independent in-place magnification with sigma lenses. IEEE Transactions on Visualization and Computer Graphics, 16(3), 455–467. https://doi.org/10.1109/TVCG.2009.98
  • Pindat, C., Pietriga, E., Chapuis, O., & Puech, C. (2012). JellyLens: Content-aware adaptive lenses. In Proceedings of the 25th annual ACM symposium on user interface software and technology (pp. 261–270). ACM.
  • Richardson, A. E., Montello, D. R., & Hegarty, M. (1999). Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Memory & Cognition, 27(4), 741–750. https://doi.org/10.3758/BF03211566
  • Richter, K F., & Winter, S. (2014). Cognitive aspects: How people perceive, memorize, think and talk about landmarks. In K. F. Richter & S. Winter (Eds.), Landmarks: GIScience for intelligent services (pp. 41–108). Springer International Publishing.
  • Roth, R. E. (2013). Interactive maps: What we know and what we need to know. Journal of Spatial Information Science, 6, 59–115. http://doi.org/10.5311/JOSIS.2013.6.105
  • Roth, R. E., Stryker, M., & Brewer, C. A. (2008). A typology of multi-scale mapping operators. In Proceedings of GIScience 2008.
  • Ruas, A. (2004). Le changement de niveau de détail dans la représentation de l'information géographique. Habilitation à diriger des recherches, Université de Marne-la-Vallée.
  • Ruddle, R. A., Thomas, R. G., Randell, R., Quirke, P., & Treanor, D. (2016, January). The design and evaluation of interfaces for navigating gigapixel images in digital pathology. ACM Transactions on Computer-Human Interaction, 23(1), 1–29. https://doi.org/10.1145/2834117
  • Sanchez, C. A., & Branaghan, R. J. (2007, October). The interaction of map resolution and spatial abilities on route learning. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 51(18), 1176–1180. https://doi.org/10.1177/154193120705101826
  • Schmidt di Friedberg, M. (2017). Geographies of disorientation. Routledge.
  • Schwartges, N., Allerkamp, D., Haunert, J. H., & Wolff, A. (2013, August). Optimizing active ranges for point selection in dynamic maps. In Proceedings of 16th ICA generalisation workshop. ICA.
  • Schwartges, N., Haunert, J. H., Wolff, A., & Zwiebler, D. (2014). Point labeling with sliding labels in interactive maps. In J. Huerta, S. Schade, & C. Granell (Eds.), Connecting a digital Europe through location and place (pp. 295–310). Springer International Publishing.
  • Sester, M., & Brenner, C. (2005). Continuous generalization for visualization on small mobile devices. In Developments in spatial data handling (pp. 355–368). Springer.
  • Sholl, M. J. (1996). From visual information to cognitive maps. In J. Portugali (Ed.), The construction of cognitive maps (pp. 157–186). Springer.
  • Smith, D. A. (2017, January). Visualising world population density as an interactive multi-scale map using the global human settlement population layer. Journal of Maps, 13(1), 117–123. https://doi.org/10.1080/17445647.2017.1400476
  • Son, K., Kim, K., & Hyun, K. H. (2022, April). BIGexplore: Bayesian information gain framework for information exploration. In CHI conference on human factors in computing systems (pp. 1–16). Association for Computing Machinery.
  • Šuba, R. (2017, November). Design and development of a system for vario-scale maps. A+BE | Architecture and the Built Environment, 18, 1–162. https://doi.org/10.7480/abe.2017.18.1877
  • Šuba, R., Meijers, M., Huang, L., & van Oosterom, P. (2014). An area merge operation for smooth zooming. In J. Huerta, S. Schade, & C. Granell (Eds.), Connecting a digital europe through location and place (pp. 275–293). Springer International Publishing.
  • Touya, G. (2019, July). Finding the oasis in the desert fog? Understanding multi-scale map reading.
  • Touya, G., & Girres, J. F. (2013, June). ScaleMaster 2.0: A scalemaster extension to monitor automatic multi-scales generalizations. Cartography and Geographic Information Science, 40(3), 192–200. https://doi.org/10.1080/15230406.2013.809233
  • Touya, G., Lobo, M. J., Mackaness, W. A., & Muehlenhaus, I. (2021). Please, help me! I am lost in zoom. In Proceedings of the ICA (Vol. 4, p. 107). Copernicus Publications.
  • Tuan, Y. F. (1975). Images and mental maps. Annals of the Association of American Geographers, 65(2), 205–212. https://doi.org/10.1111/j.1467-8306.1975.tb01031.x
  • Tversky, B. (1993). Cognitive maps, cognitive collages, and spatial mental models. In A. U. Frank & I. Campari (Eds.), Spatial information theory a theoretical basis for GIS (pp. 14–24). Springer.
  • Tversky, B., Morrison, J. B., & Betrancourt, M. (2002, October). Animation: Can it facilitate? International Journal of Human-Computer Studies, 57(4), 247–262. https://doi.org/10.1006/ijhc.2002.1017
  • van Dijk, T. C., & Haunert, J. H. (2014, March). Interactive focus maps using least-squares optimization. International Journal of Geographical Information Science, 28(10), 2052–2075. https://doi.org/10.1080/13658816.2014.887718
  • van Dijk, T., van Goethem, A., Haunert, J., Meulemans, W., & Speckmann, B. (2013). Accentuating focus maps via partial schematization. In Proceedings of the 21st ACM SIGSPATIAL international conference on advances in geographic information systems (pp. 428–431). ACM.
  • van Kreveld, M. (2001). Smooth generalization for continuous zooming. In Proceedings of 20th international cartographic conference (pp. 2180–2185). ICA.
  • van Oosterom, P., Meijers, M., Stoter, J., & Šuba, R. (2014). Data structures for continuous generalisation: tGAP and SSC. In D. Burghardt, C. Duchêne, & W. Mackaness (Eds.), Abstracting geographic information in a data rich world (pp. 83–117). Springer International Publishing.
  • Veenendaal, B., Brovelli, M. A., & Li, S. (2017, October). Review of web mapping: Eras, trends and directions. ISPRS International Journal of Geo-Information, 6(10), 317. https://doi.org/10.3390/ijgi6100317
  • Wu, H. Y., Takahashi, S., Poon, S. H., & Arikawa, M. (2017a). Introducing leader lines into scale-aware consistent labeling. In M. P. Peterson (Ed.), Advances in cartography and GIScience (pp. 117–130). Springer International Publishing.
  • Wu, H. Y., Takahashi, S., Poon, S. H., & Arikawa, M. (2017b, June). Scale-adaptive placement of hierarchical map labels. In Proceedings of the Eurographics/IEEE VGTC conference on visualization: Short papers (pp. 1–5). Eurographics Association.
  • Yamamoto, D., Ozeki, S., & Takahashi, N. (2009). Wired fisheye lens: A motion-based improved fisheye interface for mobile web map services. In J. D. Carswell, A. S. Fotheringham, & G. McArdle (Eds.), Web and wireless geographical information systems (Vol. 5886, pp. 153–170). Springer.
  • Zhao, R., Ai, T., & Wen, C. (2020, April). A method for generating variable-scale maps for small displays. ISPRS International Journal of Geo-Information, 9(4), 250. https://doi.org/10.3390/ijgi9040250
  • Zhou, S. (2014, September). Towards a multi-representation database approach to on-demand mapping and continuous zooming. In Proceedings of 17th ICA workshop on generalisation and multiple representation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.