133
Views
10
CrossRef citations to date
0
Altmetric
Articles

Powder processing methodology for production of graphene oxide reinforced aluminium matrix composites

, , , &
Pages 437-450 | Accepted 30 Sep 2016, Published online: 26 Oct 2016

References

  • Surappa MK. Aluminium matrix composites: challenges and opportunities. Sadhana. 2003;28:319–334.10.1007/BF02717141
  • Cayron C. TEM study of interfacial reactions and precipitation mechanisms in Al2O3 short fiber or high volume fraction SiC particle reinforced Al-4Cu-1Mg-0.5Ag squeeze-cast composites [ PhD]. Lausanne: Ecole Polytechnique Federale De Lausanne; 2000.
  • Novoselov KS, Geim AK, Morozov S, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669.10.1126/science.1102896
  • Kwon H, Estili M, Takagi K, et al. Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon. 2009;47:570–577.10.1016/j.carbon.2008.10.041
  • Esawi AMK, Morsi K, Sayed A, et al. Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos Sci Technol. 2010;70:2237–2241.10.1016/j.compscitech.2010.05.004
  • Singhal S, Pasricha R, Teotia S, et al. Fabrication and characterization of Al-matrix composites reinforced with amino-functionalized carbon nanotubes. Compos Sci Technol. 2011;72:103–111.10.1016/j.compscitech.2011.10.007
  • Kwon H, Park DH, Silvain JF, et al. Investigation of carbon nanotube reinforced aluminum matrix composite materials. Compos Sci Technol. 2010;70:546–550.10.1016/j.compscitech.2009.11.025
  • Esawi AMK, Morsi K, Sayed A, et al. The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites. Compos Part A: Appl Sci Manuf. 2011;42:234–243.10.1016/j.compositesa.2010.11.008
  • Jiang L, Li Z, Fan G, et al. The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon. 2012;50:1993–1998.10.1016/j.carbon.2011.12.057
  • Liu Z, Xiao B, Wang W, et al. Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon. 2012;50:1843–1852.10.1016/j.carbon.2011.12.034
  • Izadi H, Gerlich AP. Distribution and stability of carbon nanotubes during multi-pass friction stir processing of carbon nanotube/aluminum composites. Carbon. 2012;50:4744–4749.10.1016/j.carbon.2012.06.012
  • Liu Q, Ke L, Liu F, et al. Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing. Mater Des. 2013;45:343–348.10.1016/j.matdes.2012.08.036
  • Esawi AMK, Morsi K, Sayed A, et al. Fabrication and properties of dispersed carbon nanotube–aluminum composites. Mater Sci Eng: A. 2009;508:167–173.10.1016/j.msea.2009.01.002
  • Hassan MT, Esawi AM, Metwalli S. Effect of carbon nanotube damage on the mechanical properties of aluminium–carbon nanotube composites. J Alloys Compd. 2014;607:215–222.10.1016/j.jallcom.2014.03.174
  • George R, Kashyap K, Rahul R, et al. Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scr Mater. 2005;53:1159–1163.10.1016/j.scriptamat.2005.07.022
  • Bartolucci SF, Paras J, Rafiee MA, et al. Graphene–aluminum nanocomposites. Mater Sci Eng: A. 2011;528:7933–7937.10.1016/j.msea.2011.07.043
  • Neubauer E, Kitzmantel M, Hulman M, et al. Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes. Compos Sci Technol. 2010;70:2228–2236.10.1016/j.compscitech.2010.09.003
  • Loh KP, Bao Q, Ang PK, et al. The chemistry of graphene. J Mater Chem. 2010;20:2277–2289.10.1039/b920539j
  • Schniepp HC, Li J-L, McAllister MJ, et al. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B. 2006;110:8535–8539.10.1021/jp060936f
  • Yan S, Yang C, Hong Q, et al. research of graphene–reinforced aluminum matrix nanocomposites. J Mater Eng. 2011;1:1–6.
  • Pei S, Cheng H-M. The reduction of graphene oxide. Carbon. 2012;50:3210–3228.10.1016/j.carbon.2011.11.010
  • Li Z, Fan G, Tan Z, et al. Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites. Nanotechnology. 2014;25:325601 ( 1–8).10.1088/0957-4484/25/32/325601
  • Wu Z-S, Ren W, Gao L, et al. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon. 2009;47:493–499.10.1016/j.carbon.2008.10.031
  • Wang J, Li Z, Fan G, et al. Reinforcement with graphene nanosheets in aluminum matrix composites. Scr Mater. 2012;66:594–597.10.1016/j.scriptamat.2012.01.012
  • Wan D, Yang C, Lin T, et al. Low-temperature aluminum reduction of graphene oxide, electrical properties, surface wettability, and energy storage applications. ACS Nano. 2012;6:9068–9078.10.1021/nn303228r
  • Boostani AF, Tahamtan S, Jiang Z, et al. Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles. Compos Part A: Appl Sci Manuf. 2015;68:155–163.10.1016/j.compositesa.2014.10.010
  • Li JL, Xiong YC, Wang XD, et al. Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling. Mater Sci Eng: A. 2015;626:400–405.10.1016/j.msea.2014.12.102
  • Rashad M, Pan F, Tang A, et al. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog Nat Sci: Mater Int. 2014;3:101–108.
  • Shin SE, Choi HJ, Shin JH, et al. Strengthening behavior of few-layered graphene/aluminum composites. Carbon. 2015;82:143–151.10.1016/j.carbon.2014.10.044
  • Boostani AF, Yazdani S, Mousavian RT, et al. Strengthening mechanisms of graphene sheets in aluminium matrix nanocomposites. Mater Des. 2015;88:983–989.
  • Djuricic M, Dragojlovic M, Novakovic R. Cold sintering of aluminum and its alloys. Sci Sinter. 1986;18:87–89.
  • Totten GE, MacKenzie DS, Handbook of aluminum. Vol. 1, Physical metallurgy and processes. New York (NY): Taylor & Francis; 2003.
  • Gökçe A, Fındık F. Mechanical and physical properties of sintered aluminum powders. J Achievem Mater Manuf Eng. 2008;30:157–164.
  • Pieczonka T, Schubert T, Baunack S, et al. Sintering behaviour of aluminium in different atmospheres. Proceedings of the 4th International Conference on Science, Technology and Applications of Sintering. 2008; Grenoble, France; p. 331–334.
  • He C, Zhao N, Shi C, et al. Mechanical properties and microstructures of carbon nanotube-reinforced Al matrix composite fabricated by in situ chemical vapor deposition. J Alloys Compd. 2009;487:258–262.10.1016/j.jallcom.2009.07.099
  • Bockstiegel G. A simple formula for the calculation of spatial size distributions from data found by lineal analysis. In: Elias H, editor. Stereology. Chicago: Springer Berlin Heidelberg; 1967; p. 193–194.
  • Zakharchenko K, Fasolino A, Los J, et al. Melting of graphene: from two to one dimension. J Phys: Condens Matter. 2011;23:1–12.
  • Liu U, Khan J, Coleman B, et al. Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: powder synthesis and prepared composite characteristics. Mater Des. 2016;94:87–94.10.1016/j.matdes.2016.01.031

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.