27
Views
1
CrossRef citations to date
0
Altmetric
Articles

Corrosion behaviour of hybrid sol-gel coated steel embedded in carbonated Portland and fly ash mortars contaminated with chlorides

, , &
Pages 557-565 | Accepted 08 Oct 2016, Published online: 17 Nov 2016

References

  • Gartner E. Industrially interesting approaches to “low-CO2” cements. Cem Concr Res. 2004;34:1489–1498.
  • Davidovits J. Geopolymers: Inorganic polymeric new materials. J Therm Anal. 1991;37:1633–1656.10.1007/BF01912193
  • Duxson P, Fernández-Jiménez A, Provis JL, et al. Geopolymer technology: the current state of the art. J Mater Sci. 2007;42:2917–2933.10.1007/s10853-006-0637-z
  • Palomo A, Grutzeck MW, Blanco MT. Alkali-activated fly ashes: A cement for the future. Cem Concr Res. 1999;29:1323–1329.10.1016/S0008-8846(98)00243-9
  • Hardjito D, Wallah SE, Sumajouw DMJ, et al. On the development of fly ash-based geopolymer concrete. ACI Mater J. 2005;101:467–472.
  • Criado M, Monticelli C, Fajardo S, et al. Organic corrosion inhibitor mixtures for reinforcing steel embedded in carbonated alkali-activated fly ash mortar. Constr Build Mater. 2012;35:30–37.10.1016/j.conbuildmat.2012.02.078
  • Monticelli C, Criado M, Fajardo S, et al. Corrosion behaviour of a low Ni austenitic stainless steel in carbonated chloride-polluted alkali-activated fly ash mortar. Cem Concr Res. 2014;55:49–58.10.1016/j.cemconres.2013.09.014
  • Bertolini L, Elsener B, Pedeferri P, et al. Chapter 4. General aspects. In: Corrosion of steel in concrete- Prevention, diagnosis, repair. Weinheim: Willey-VCH Verlag GmbH & Co. kGaA; 2004. p. 71–77.
  • Gónzalez JA. Prediction of reinforced concrete structure durability by electrochemical techniques. Corrosion. 2007;63:811–818.
  • Angst U, Elsener B, Larsen CK, et al. Critical chloride content in reinforced concrete-A review. Cem Concr Res. 2009;39:1122–1138.10.1016/j.cemconres.2009.08.006
  • Ihekwaba NM, Hope BB, Hansson CM. Carbonation and electrochemical chloride extraction from concrete. Cem Concr Res. 1996;26:1095–1107.10.1016/0008-8846(96)00076-2
  • Carmona N, Villegas MA, Fernández-Navarro JM. Sol-gel coatings in the ZrO2–SiO2 system for protection of historical works of glass. Thin Solid Films. 2006;515:1320–1326.
  • Meier B, Grathwohl G, Spallek M, et al. Sol-gel coatings on ceramic fibers for ceramic matrix composites. J Eur Ceram Soc. 1992;10:237–243.10.1016/0955-2219(92)90037-E
  • Fedrizzi L, Rodriguez FJ, Rossi S, et al. The use of electrochemical techniques to study the corrosion behaviour of organic coatings on steel pretreated with sol-gel zirconia films. Electrochim Acta. 2001;46:3715–3724.
  • Guglielmi M. Sol-gel coatings on metals. J Sol–Gel Sci Technol. 1997;8:443–449.
  • Judeinstein P, Sanchez CJ. Hybrid organic-inorganic materials: a land of multidisciplinarity. J Mater Chem. 1996;6:511–525.10.1039/JM9960600511
  • Zaręba-Grodź I, Miśta W, Stręk W, et al. Synthesis and properties of an inorganic-organic hybrid prepared by the sol-gel method. Opt Mater. 2004;26:207–211.10.1016/j.optmat.2003.11.022
  • Houmard M, Vasconcelos DCL, Vasconcelos WL, et al. Water and oil wettability of hybrid organic-inorganic titanate-silicate thin films deposited via a sol-gel route. Surf Sci. 2009;603:2698–2707.10.1016/j.susc.2009.07.005
  • Minami T, Tohge N. Formation of inorganic coatings on polymer films by the sol-gel method. New Glass. 1994;9:23–28.
  • Barranco V, Carmona N, Galván JC, et al. Electrochemical study of tailored sol-gel thin films as pre-treatment prior to organic coating for AZ91 magnesium alloy. Prog Org Coat. 2010;68:347–355.10.1016/j.porgcoat.2010.02.009
  • Criado M, Sobrados I, Sanz J. Polymerization of hybrid organic-inorganic materials from several silicon compounds followed by TGA/DTA, FTIR and NMR techniques. Prog Org Coat. 2014;77:880–891.10.1016/j.porgcoat.2014.01.019
  • ASTM E104-02 Standard. Maintaining constant relative humidity by means of aqueous solutions. West Conshohocken, PA: ASTM International; 2007.
  • Stern M, Geary AL. Electrochemical polarization I. A theoretical analysis of the shape of polarization curves. J Electrochem Soc. 1957;104:56–63.10.1149/1.2428496
  • Andrade C, Castelo V, Alonso C, et al. The determination of the corrosion rate of steel embedded in concrete by the polarization resistance and AC impedance methods. In: Victor Chacker, editor. STP 906, corrosion of rebars in concrete. Philadelphia, PA: ASTM; 1984. p. 43–63.
  • ASTM C876-09 Standard. Test method for half-cell potentials of uncoated reinforcing steel in concrete. West Conshohocken, PA: ASTM International; 2009.
  • Tang F, Chen G, Volz JS, et al. Cement-modified enamel coating for enhanced corrosion resistance of steel reinforcing bars. Cem Concr Comp. 2013;35:171–180.10.1016/j.cemconcomp.2012.08.009
  • Zafeiropoulou T, Rakanta E, Batis G. Performance evaluation of organic coatings against corrosion in reinforced cement mortars. Prog Org Coat. 2011;72:175–180.10.1016/j.porgcoat.2011.04.005
  • Durar network specification manual inspection. Evaluation and assessment of corrosion in reinforced concrete structures. Rio de Janeiro: CYTED Programe; 1997.
  • Pour-Ali S, Dehghanian C, Kosari A. Corrosion protection of the reinforcing steels in chloride-laden concrete environment through epoxy/polyaniline-camphorsulfonate nanocomposite coating. Corros Sci. 2015;90:239–247.10.1016/j.corsci.2014.10.015
  • Criado M, Sobrados I, Sanz J, et al. Steel protection using sol-gel coatings in simulated concrete pore solution contaminated with chlorides. Surf Coat Technol. 2014;258:485–494.10.1016/j.surfcoat.2014.08.051
  • Criado M, Sobrados I, Sanz J, et al. Steel corrosion in simulated carbonated concrete pore solution its protection using sol-gel coatings. Prog Org Coat. 2015;88:228–236.10.1016/j.porgcoat.2015.06.002
  • Taylor HFW. Cement chemistry. London: Academic Press; 1990.
  • Palomo A, Alonso S, Fernández-Jiménez A, et al. Alkaline activation of fly ashes. A 29Si NMR study of the reactions products. J Am Ceram Soc. 2004;87:1141–1145.10.1111/jace.2004.87.issue-6
  • Amaral ST. Passivation of pure iron in alkaline solution containing silicate and sulphate-galvanostatic and potentiostatic studies. Corros Sci. 1999;41:747–758.10.1016/S0010-938X(98)00148-6
  • Amaral ST. A RRDE study of the electrochemical behavior of iron in solutions containing silicate and sulphate at pH 10–13. Corros Sci. 1999;41:759–771.10.1016/S0010-938X(98)00149-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.