43
Views
1
CrossRef citations to date
0
Altmetric
Articles

An insight of spirooxindole-annulated thiopyran – DNA interaction: spectroscopic and docking approach of these biological materials

, ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 339-352 | Accepted 12 May 2017, Published online: 22 May 2017

References

  • Singh MP, Joseph T, Kumar S, et al. Synthesis and sequence-specific DNA binding of a topoisomerase inhibitory analog of Hoechst 33258 designed for altered base and sequence recognition. Chem Res Toxicol. 1992;5(5):597–607.10.1021/tx00029a003
  • Sparks J, Scholz C. Evaluation of a cationic poly(β-hydroxyalkanoate) as a plasmid DNA delivery system. Biomacromolecules. 2009;10(7):1715–1719. DOI:10.1021/bm900372x
  • Jw L. Lexitropsins: rational design of DNA sequence reading agents as novel anti-cancer agents and potential cellular probes. Anticancer Drug Des. 1988;3(1):25–40.
  • Kundu P, Ghosh S, Chattopadhyay N. Exploration of the binding interaction of a potential nervous system stimulant with calf-thymus DNA and dissociation of the drug–DNA complex by detergent sequestration. Phys Chem Chem Phys. 2015;17(27):17699–17709. DOI:10.1039/C5CP02101D
  • Hossain M, Suresh Kumar G. Thermodynamic profiles of the DNA binding of benzophenanthridines sanguinarine and ethidium: a comparative study with sequence specific polynucleotides. J Chem Thermodyn. 2010;42(10):1273–1280. DOI:10.1016/j.jct.2010.05.005
  • Kabir A, Hossain M, Kumar GS. Thermodynamics of the DNA binding of biogenic polyamines: calorimetric and spectroscopic investigations. J Chem Thermodyn. 2013;57:445–453. DOI:10.1016/j.jct.2012.09.025
  • Ma Y, Zhang G, Pan J. Spectroscopic studies of DNA interactions with food colorant indigo carmine with the use of ethidium bromide as a fluorescence probe. J Agric Food Chem. 2012;60(43):10867–10875. DOI:10.1021/jf303698k
  • Erkkila KE, Odom DT, Barton JK. Recognition and reaction of metallointercalators with DNA. Chem Rev. 1999;99(9):2777–2796.10.1021/cr9804341
  • Carter MT, Rodriguez M, Bard AJ. Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2’-bipyridine. J Am Chem Soc. 1989;111(24):8901–8911. DOI:10.1021/ja00206a020
  • Das S, Kumar GS. Molecular aspects on the interaction of phenosafranine to deoxyribonucleic acid: model for intercalative drug–DNA binding. J Mol Struct. 2008;872(1):56–63. DOI:10.1016/j.molstruc.2007.02.016
  • Bischoff G, Hoffmann S. DNA-binding of drugs used in medicinal therapies. Curr Med Chem. 2002;9(3):312–348.
  • Neidle S, Nunn CM. Crystal structures of nucleic acids and their drug complexes. Nat Prod Rep. 1998;15(1):1–15.10.1039/a815001y
  • Tsuboi M, Benevides JM, Thomas GJ Jr. The complex of ethidium bromide with genomic DNA: structure analysis by polarized raman spectroscopy. Biophys J. 2007;92(3):928–934. DOI:10.1529/biophysj.106.093633
  • Rohs R, Bloch I, Sklenar H, et al. Molecular flexibility in ab initio drug docking to DNA: binding-site and binding-mode transitions in all-atom Monte Carlo simulations. Nucleic Acids Res. 2005;33(22):7048–7057. DOI:10.1093/nar/gki1008
  • Carle JS, Christophersen C. Marine alkaloids. 2. Bromo alkaloids from a marine bryozoan Flustra foliacea. Isolation and structure elucidation. J Org Chem. 1980;45(9):1586–1589. DOI:10.1021/jo01297a007
  • Kamijo S, Yamamoto Y. A bimetallic catalyst and dual role catalyst: synthesis of N-(Alkoxycarbonyl)indoles from 2-(Alkynyl)phenylisocyanates. J Org Chem. 2003;68(12):4764–4771. DOI:10.1021/jo034254p
  • Brown MJ, Carter PS, Fenwick AE, et al. The antimicrobial natural product chuangxinmycin and some synthetic analogues are potent and selective inhibitors of bacterial tryptophanyl tRNA synthetase. Bioorg Med Chem Lett. 2002;12(21):3171–3174. DOI:10.1016/S0960-894X(02)00604-2
  • Quaglia W, Pigini M, Piergentili A, et al. Structure–activity relationships in 1,4-benzodioxan-related compounds. 7. Selectivity of 4-phenylchroman analogues for α1–adrenoreceptor subtypes. J Med Chem. 2002;45(8):1633–1643. DOI:10.1021/jm011066n
  • Majumdar KC, Ponra S, Nandi RK. One-pot efficient green synthesis of spirooxindole-annulated thiopyran derivatives via Knoevenagel condensation followed by Michael addition. Tetrahedron Lett. 2012;53(14):1732–1737. DOI:10.1016/j.tetlet.2012.01.099
  • Vardevanyan PO, Antonyan AP, Parsadanyan MA, et al. The binding of ethidium bromide with DNA: interaction with single- and double-stranded structures. Exp Mol Med. 2003;35(6):527–533. DOI:10.1038/emm.2003.68
  • Mandal A, Ghosh S, Bothra AK, et al. Synthesis of friedelan triterpenoid analogs with DNA topoisomerase IIα inhibitory activity and their molecular docking studies. Eur J Med Chem. 2012;54:137–143. DOI:10.1016/j.ejmech.2012.04.037
  • Marinelli L, Lavecchia A, Gottschalk K-E, et al. Docking studies on αvβ3 integrin ligands: pharmacophore refinement and implications for drug design. J Med Chem. 2003;46(21):4393–4404. DOI:10.1021/jm020577m
  • Stephanos JJ. Drug-protein interactions: two-site binding of heterocyclic ligands to a monomeric hemoglobin. J Inorg Biochem. 1996;62(3):155–169.10.1016/0162-0134(95)00144-1
  • Marty R, N’soukpoé-Kossi CN, Charbonneau D, et al. Structural analysis of DNA complexation with cationic lipids. Nucleic Acids Res. 2009;37(3):849–857. DOI:10.1093/nar/gkn1003
  • Benesi HA, Hildebrand JH. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc. 1949;71(8):2703–2707. DOI:10.1021/ja01176a030
  • Mariam J, Dongre PM, Kothari DC. Study of interaction of silver nanoparticles with bovine serum albumin using fluorescence spectroscopy. J Fluoresc. 2011;21(6):2193–2199. DOI:10.1007/s10895-011-0922-3
  • Lakowicz JR. Principles of fluorescence spectroscopy. Springer-Verlag: Springer; 2006. DOI: 10.1007/978-0-387-46312-4
  • Pacheco ME, Bruzzone L. Interactions between imazethapyr and bovine serum albumin: spectrofluorimetric study. J Lumin. 2012;132(10):2730–2735. DOI:10.1016/j.jlumin.2012.05.023
  • Anbazhagan V, Renganathan R. Study on the binding of 2,3-diazabicyclo[2.2.2]oct-2-ene with bovine serum albumin by fluorescence spectroscopy. J Lumin. 2008;128(9):1454–1458. DOI:10.1016/j.jlumin.2008.02.004
  • Darban RA, Shareghi B, Asoodeh A, et al. Multi-spectroscopic and molecular modeling studies of interaction between two different angiotensin I converting enzyme inhibitory peptides from gluten hydrolysate and human serum albumin. J Biomol Struct Dyn. 2016;1–15. DOI:10.1080/07391102.2016.1264892
  • Psomas G, Tarushi A, Efthimiadou EK. Synthesis, characterization and DNA-binding of the mononuclear dioxouranium(VI) complex with ciprofloxacin. Polyhedron. 2008;27(1):133–138. DOI:10.1016/j.poly.2007.08.043
  • Min J, Meng-Xia X, Dong Z, et al. Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin. J Mol Struct. 2004;692(1–3):71–80. DOI:10.1016/j.molstruc.2004.01.003
  • Kandagal PB, Ashoka S, Seetharamappa J, et al. Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach. J Pharm Biomed Anal. 2006;41(2):393–399. DOI:10.1016/j.jpba.2005.11.037
  • Roy S, Nandi RK, Ganai S, et al. Binding interaction of phosphorus heterocycles with bovine serum albumin: a biochemical study. J Pharm Anal. 2017;7(1):19–26. DOI:10.1016/j.jpha.2016.05.009
  • Roy S, Das TK. Investigation of interaction between casein enzyme hydrolysate and biosynthesized silver nanoparticles by spectroscopy. Nanosci Nanotechnol Lett. 2014;6(7):547–554. DOI:10.1166/nnl.2014.1852
  • Roy S, Das TK. Interaction of biosynthesized gold nanoparticles with BSA and CTDNA: a multi-spectroscopic approach. Polyhedron. 2016;115:111–118. DOI:10.1016/j.poly.2016.05.002
  • Roy S, Saxena SK, Mishra S, et al. Evidence of bovine serum albumin-viologen herbicide binding interaction and associated structural modifications. J Mol Struct. 2017;1139:447–454. DOI:10.1016/j.molstruc.2017.03.058
  • Boger DL, Fink BE, Hedrick MP. Total synthesis of distamycin A and 2640 analogues: a solution-phase combinatorial approach to the discovery of new, bioactive DNA binding agents and development of a rapid, high-throughput screen for determining relative DNA binding affinity or DNA binding sequence selectivity. J Am Chem Soc. 2000;122(27):6382–6394. DOI:10.1021/ja994192d
  • Lee M, Rhodes AL, Wyatt MD, et al. GC base sequence recognition by oligoimidazolecarboxamide and C-terminus-modified analogs of distamycin deduced from circular dichroism, proton nuclear magnetic resonance, and methidiumpropylethylenediaminetetraacetate-iron(II) footprinting studies. Biochemistry. 1993;32(16):4237–4245. DOI:10.1021/bi00067a011
  • Roy S, Sadhukhan R, Ghosh U, et al. Interaction studies between biosynthesized silver nanoparticle with calf thymus DNA and cytotoxicity of silver nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc. 2015;141:176–184. DOI:10.1016/j.saa.2015.01.041
  • Liu Y, Chen M, Luo Z, et al. Investigation on the site-selective binding of bovine serum albumin by erlotinib hydrochloride. J Biomol Struct Dyn. 2013;31(10):1160–1174. DOI:10.1080/07391102.2012.726532
  • Némethy G, Scheraga HA. The structure of water and hydrophobic bonding in proteins. Iii. The thermodynamic properties of hydrophobic bonds in proteins. J Phys Chem. 1962;66(10):1773–1789. DOI:10.1021/j100816a004
  • Ross PD, Subramanian S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry. 1981;20(11):3096–3102.10.1021/bi00514a017
  • Shahabadi N, Fatahi A. Multispectroscopic DNA-binding studies of a tris-chelate nickel(II) complex containing 4,7-diphenyl 1,10-phenanthroline ligands. J Mol Struct. 2010;970(1–3):90–95. DOI:10.1016/j.molstruc.2010.02.048
  • Shahabadi N, Fili SM, Kheirdoosh F. Study on the interaction of the drug mesalamine with calf thymus DNA using molecular docking and spectroscopic techniques. J Photochem Photobiol, B. 2013;128:20–26. DOI:10.1016/j.jphotobiol.2013.08.005
  • Krishna AG, Kumar DV, Khan BM, et al. Taxol-DNA interactions: fluorescence and CD studies of DNA groove binding properties of taxol. Biochimica Et Biophysica Acta. 1998;1381(1):104–112.10.1016/S0304-4165(98)00019-1
  • Sahoo D, Bhattacharya P, Chakravorti S. Quest for mode of binding of 2-(4-(dimethylamino)styryl)-1-methylpyridinium Iodide with calf thymus DNA. J Phys Chem B. 2010;114(5):2044–2050. DOI:10.1021/jp910766q
  • Caruso F, Rossi M, Benson A, et al. Ruthenium-arene complexes of curcumin: X-ray and density functional theory structure, synthesis, and spectroscopic characterization, in vitro antitumor activity, and DNA docking studies of (p-cymene)ru(curcuminato)chloro. J Med Chem. 2012;55(3):1072–1081. DOI:10.1021/jm200912j
  • Shi J-H, Liu T-T, Jiang M, et al. Characterization of interaction of calf thymus DNA with gefitinib: spectroscopic methods and molecular docking. J Photochem Photobiol, B. 2015;147:47–55. DOI:10.1016/j.jphotobiol.2015.03.005
  • Kumari M, Maurya JK, Singh UK, et al. Spectroscopic and docking studies on the interaction between pyrrolidinium based ionic liquid and bovine serum albumin. Spectrochim Acta Part A Mol Biomol Spectrosc. 2014;124:349–356. DOI:10.1016/j.saa.2014.01.012
  • Selva Sharma A, Anandakumar S, Ilanchelian M. A combined spectroscopic and molecular docking study on site selective binding interaction of Toluidine blue O with Human and Bovine serum albumins. J Lumin. 2014;151:206–218. DOI:10.1016/j.jlumin.2014.02.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.