43
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Prediction of effect of tungsten filled Co-30Cr-4Mo-1Ni metal matrix biomedical composite alloy on sliding wear peculiarity using Taguchi methodology and ANN

, &
Pages 665-688 | Accepted 08 Aug 2017, Published online: 20 Aug 2017

References

  • Aherwar A, Singh A, Patnaik A. Cobalt based alloy: a better choice biomaterial for hip implants. Trends Biomater Artif Organs. 2016;30(1):50–55.
  • Ghalme SG, Mankar A, Bhalerao Y. Biomaterials in hip joint replacement. Int J Sci Eng. 2016;4(2):113–125.
  • Schappo H, Gindri IM, Cubillos PO, et al. Scanning electron microscopy and energy dispersive X-ray spectroscopy as a valuable tool to investigate the ultra high molecular weight polyethylene wear mechanisms and debris in hip implants. J Arthroplasty. 2017. DOI:10.1016/j.arth.2017.07.039.
  • Aherwar A, Patnaik A, Bahraminasab M, et al. Preliminary evaluations on development of new materials for hip joint femoral head. Proc Inst Mech Eng L J Mater Des Appl. 2017: DOI:10.1177/1464420717714495.
  • Simoes TA, Bryant MG, Brown AP, et al. Evidence for the dissolution of molybdenum during tribocorrosion of CoCrMo hip implants in the presence of serum protein. Acta Biomater. 2016;45:410–418.10.1016/j.actbio.2016.08.051
  • Pourzal R, Catelas I, Theissmann R, et al. Characterization of wear particles generated from CoCrMo alloy under sliding wear conditions. Wear. 2011;271:1658–1666.10.1016/j.wear.2010.12.045
  • Aherwar A, Singh A, Patnaik A. Study on mechanical and wear characterization of novel Co30Cr4Mo biomedical alloy with added nickel under dry and wet sliding conditions using Taguchi approach. Proc Inst Mech Eng L J Mater Des Appl. 2016. DOI:10.1177/1464420716638112.
  • Sagbas B, Durakbasa MN, Sagbas M, et al. Measurement and theoretical determination of frictional temperature rise between sliding surfaces of artificial hip joints. Measurement. 2014;51:411–419.10.1016/j.measurement.2013.12.020
  • Kim RH, Dennis DA, Carothers JT. Metal-on-metal total hip arthroplasty. J Arthroplasty. 2008;23(7):44–46.
  • Konttinen YT, Zhao D, Beklen A, et al. The microenvironment around total hip replacement prostheses. Clin Orthop Relat Res. 2005;430:28–38.10.1097/01.blo.0000150451.50452.da
  • Wang A, Essner A, Schmidig G. The effect of lubricant composition on in vitro wear testing of polymeric acetabular components. J Biomed Mater Res Part B: Appl Biomater. 2004;68B:45–52.10.1002/(ISSN)1097-4636
  • Senthil PK, Manisekar K, Narayanasamy R. Experimental and prediction of abrasive wear behavior of sintered Cu-SiC composites containing graphite by using artificial neural networks. Tribol Trans. 2014;57:455–471.10.1080/10402004.2014.880979
  • Sakraoui T, Guessasma S, Fenineche NE, et al. Friction and wear behavior prediction of HVOF coatings and electroplated hard chromium using neural computation. Mater Lett. 2004;58:654–660.
  • Kavimani V, Prakash K. Tribological behaviour predictions of r-GO reinforced Mg composite using ANN coupled Taguchi approach. J Phys Chem Solids. 2017;110:409–419.10.1016/j.jpcs.2017.06.028
  • Yetim AF, Codur MY, Yazici M. Using of artificial neural network for the prediction of tribological properties of plasma nitride 316L stainless steel. Mater Lett. 2015;158:170–173.10.1016/j.matlet.2015.06.015
  • Rout A, Satapathy A. Analysis of dry sliding wear behavior of rice husk filled epoxy composites using design of experiment and ANN. Procedia Eng. 2012;38:1218–1232.10.1016/j.proeng.2012.06.153
  • Canakci A, Varol T, Ozsahin S. Analysis of the effect of a new process control agent technique on the mechanical milling process using a neural network model: measurement and modeling. Measurement. 2013;46:1818–1827.10.1016/j.measurement.2013.02.005
  • Canakci A, Varol T, Ozsahin S. Prediction of effect of volume fraction compact pressure and milling time on properties of Al-Al2O3 MMCs using neural networks. Met Mater Int. 2013;19:519–526.10.1007/s12540-013-3021-y
  • Varol T, Canakci A, Ozsahin S. Artificial neural network modeling to effect of reinforcement properties on the physical and mechanical properties of Al2O24–B4C composites produced by powder metallurgy. Composites: Part B. 2013;54:224–233.10.1016/j.compositesb.2013.05.015
  • Gyurova LA, Friedrich K. Artificial neural networks for predicting sliding friction and wear properties of polyphenylene sulfide composites. Tribol Int. 2011;44:603–609.10.1016/j.triboint.2010.12.011
  • Altinkok N, Koker R. Use of artificial neural network for predictions of physical properties and tensile strengths is particle reinforced aluminium matrix composites. J Mater Sci Eng. 2005;40:1767–1770.
  • Rashed FS, Mahmoud TS. Prediction of wear behavior of A356/SiCp MMCs using neural networks. Tribol Int. 2009;42:642–648.10.1016/j.triboint.2008.08.010
  • A.S.T.M. G99-95, standard test method for wear testig with a Pin-on-Disc apparatus. West Consho-hocken (PA): ASTM International, Annual Book of Standards; 2000.
  • Rout AK, Satapathy A. Study on mechanical and tribo-performance of rice-husk filled glass–epoxy hybrid composites. J Mater Des. 2012;41:131–141.10.1016/j.matdes.2012.05.002
  • Patnaik A, Satapathy A, Mahapatra SS. Study on erosion response of hybrid composites using Taguchi experimental design. J Eng Mater Technol. 2009;131:031011–031016.10.1115/1.3086334
  • Biswas S, Satapathy A. A study on tribological behavior of alumina-filled glass-epoxy composites using taguchi experimental design. Tribol Trans. 2010;53:520–532.10.1080/10402000903491309
  • Siddhartha, Patnaik A, Bhatt AD. Mechanical and dry sliding wear characterization of epoxy–TiO2 particulate filled functionally graded composites materials using Taguchi design of experiment. J Mater Des. 2011;32:615–627.10.1016/j.matdes.2010.08.011
  • Mandal N, Doloi B, Mondal B, et al. Optimization of flank wear using Zirconia Toughened Alumina (ZTA) cutting tool: Taguchi method and regression analysis. Measurement. 2011;44:2149–2155.10.1016/j.measurement.2011.07.022
  • Aherwar A, Singh A, Patnaik A. Current and future biocompatibility aspects of biomaterials for hip prosthesis. AIMS Bioeng. 2016;3(1):23–43.
  • Montero-Ocampo C, Juarez R, Salinas-Rodriguez A. Effect of FCC–HCP phase transformation produced by isothermal aging on the corrosion resistance of a Co-27Cr-5Mo-0.05C alloy. Metall Mater Trans A. 2007;33:2229–2235.
  • Liu R, Yao JH, Zhang QL, et al. Sliding wear and solid-particle erosion resistance of a novel high-tungsten Stellite alloy. Wear. 2015;322–323:41–50.10.1016/j.wear.2014.10.012
  • Rosenthal R, Cardoso BR, Bott IS, et al. Phase characterization in as-cast F-75 Co–Cr–Mo–C alloy. J Mater Sci. 2010;45(15):4021–4028.
  • ASTM F1537. Standard specification for wrought Cobalt–28Chromium–6Molybdenum alloys for surgical implants. West Conshohocken (PA): ASTM International. 2000.
  • A.S.T.M. F75. Standard specification for Cobalt-28 Chromium-6 Molybdenum alloy castings and casting alloy for surgical implants (UNS R30075)1. West Consho-hocken (PA): ASTM International, Annual Book of Standards. 2014.
  • Qu D, Zhou Z, Yum Y, et al. Mechanical characterization and modeling of brazed tungsten and Cu–Cr–Zr alloy using stress relief inter layers. J Nucl Mater. 2014;455:130–133.10.1016/j.jnucmat.2014.04.026
  • Karaali A, Mirouh K, Hamamda S, et al. Microstructural study of tungsten influence on Co–Cr alloys. Mater Sci Eng A. 2005;390:255–259.10.1016/j.msea.2004.08.001
  • Totouge M, Harima N, Takaki S, et al. Effect of tungsten on mechanical properties of high-purity 60 mass%Cr–Fe Alloys. Mater Trans. 2002;43(2):141–146.10.2320/matertrans.43.141
  • Karaali A, Mirouh K, Hamamda S, et al. Effect of tungsten 0–8 wt.% on the oxidation of Co–Cr alloys. Comput Mater Sci. 2005;33:37–43.10.1016/j.commatsci.2004.12.025
  • Jiahua Z, Yijun S, Xin F, et al. Prediction on tribological properties of carbon fiber and TiO2 synergistic reinforced polytetrafluoroethylene composites with artificial neural networks. Mater Des. 2009;30:1042–1049.
  • Mahapatra SS, Datta S. A grey-based taguchi method for wear assessment of red mud filled polyester composites. Int J Modeling Optimizat. 2011;1:1–9.
  • Figueiredo-Pina CG, Yan Y, Neville A, et al. Understanding the differences between the wear of metal-on-metal and ceramic-on-metal total hip replacements. J Eng Med. 2008;363:285–295.10.1243/09544119JEIM363
  • Weston DP, Shipway PH, Harris SJ, et al. Friction and sliding wear behavior of electrodeposited cobalt and cobalt–tungsten alloy coatings for replacement of electrodeposited chromium. Wear. 2009;267:934–943.10.1016/j.wear.2009.01.006
  • Gispert MP, Serro AP, Colaço R, et al. Friction and wear mechanisms in hip prosthesis: comparison of joint materials behavior in several lubricants. Wear. 2006;260:149–158.10.1016/j.wear.2004.12.040
  • Kumagai1 K, Nomura N, Chiba A. Effect of dissolved oxygen content on Pin-on-Disc wear behavior of biomedical Co–Cr–Mo alloys in a like-on-like configuration in distilled water. Mater Trans. 2007;48(6):1511–1516.10.2320/matertrans.MRA2007601
  • Capel H, Shipway PH, Harris SJ. Sliding wear behavior of electrodeposited cobalt–tungsten and cobalt–tungsten–iron alloys. Wear. 2003;255:917–923.10.1016/S0043-1648(03)00241-2
  • Firkins PJ, Tipper JL, Ingham E, et al. A novel low wearing differential hardness, ceramic-on-metal hip joint prosthesis. J Bio-Mech. 2001;34(10):1291–1298.
  • Doni Z, Alves AC, Toptan F, et al.  Dry sliding and tribocorrosion behavior of hot pressed CoCrMo biomedical alloy as compared with the cast CoCrMo and Ti6Al4 V alloys. J Mater Des. 2013;52:47–57.10.1016/j.matdes.2013.05.032
  • Sierros KA, Morris NJ, Kukureka SN, et al. Dry and wet sliding wear of ITO-coated PET components used in flexible optoelectronic applications. Wear. 2009;267:625–631.10.1016/j.wear.2008.12.042
  • Haseeb A, Albers U, Bade K. Friction and wear characteristics of electrodeposited nanocrystalline nickel–tungsten alloy films. Wear. 2008;264:106–112.10.1016/j.wear.2007.02.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.