87
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Predictive study of Inconel718 mechanical properties at sub-zero temperatures

, , &
Pages 233-243 | Accepted 14 Feb 2020, Published online: 09 Mar 2020

References

  • Pollock TM, Tin S. Nickel-based super alloys for advanced turbine engines chemistry, microstructure and properties. J Propul Power. 2006;22(2):361–374.
  • Eiselstein HL. Age-hardenable nickel alloy. U. S. Patent 3. 1962;046:108.
  • S. M. Corporation. Inconel alloys 718. Publication Number SMC-045. 2007.
  • Zhao X, Chen J, Lin X, et al. Study on microstructure and mechanical properties of laser rapid forming Inconel 718. Mater Sci Eng A. 2008;478(1–2):119–124.
  • Rao GA, Kumar M, Srinivas M, et al. Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatic pressed superalloy Inconel 718. Mater Sci Eng A. 2003;355(1–2):114–125.
  • Ram GJ, Reddy AV, Rao KP, et al. Microstructure and mechanical properties of Inconel 718 electron beam welds. Mater Sci Technol. 2005;21(10):1132–1138.
  • Zhang SH, Zhang HY, Cheng M. Tensile deformation and fracture characteristics of delta-processed Inconel 718 alloy at elevated temperature. Mater Sci Eng A. 2011;528(19–20):6253–6258.
  • Gauri M, Nitin K, Gupta AK, et al. Study of mechanical properties and microstructural analysis for Inconel alloy sheet at elevated temperature. Mater Today. 2018;5:18016–18023.
  • Yoshinori O, Tetsumi Y, Hideshi S, et al. High-cycle fatigue properties at cryogenic temperatures in INCONEL 718 nickel-based super alloy. Mater Trans. 2004;45(2):342–345.
  • Sandeep M, Jayahari L, Satyanarayana K, et al. Evaluation and optimization of material properties of brass at sub-zero temperature using taguchi robust design. Mater Today Proc. 2019;18:4458–4465.
  • Yan J-B, Xie J. Experimental studies on mechanical properties of steel reinforcements under cryogenic temperatures. Constr Build Mater. 2017;151:661–672.
  • Ageladarakis PA, O’Dowd1 NP, Webster GA. Tensile and fracture toughness tests of CuNiSi at room and cryogenic temperatures. JET–R. 1999. p. 01
  • Dharanikota H, Ahsan Ul Haq TB, Ajay Kumar K, et al. Comparative study on mechanical behavior of ASS 316L for low and high temperature applications. ICMMSE. 2019.
  • Hussaini SM, Singh SK, Gupta AK. Experimental and numerical investigation of formability for austenitic stainless steel 316 at elevated temperatures. J Mater Res Tech No L. 2014;3(1):17–24.
  • Tobler RL. Low temperature effects on the fracture behavior of a nickel base super alloy. 1976;16(11):669–674.
  • Hussaini SM, Geetha K, Gupta AK, et al. Development of experimental and theoretical forming limit diagrams for warm forming of austenitic stainless steel 316. J Manuf Processes. 2015;18:151–158.
  • Anitha Lakshmi A, Srinivasa Rao C, Srikanth M. Prediction of mechanical properties of ASS 304 in superplastic region using artificial neural networks. Mater Today Proc. 2018;5:3704–3712.
  • Devendranath Ramkumar K, Sidharth Deva KV, Prabhakar. P. Microstructure and properties of Inconel 718 and AISI 416 laser welded joints. J Mater Process Tech. 2019;266:52–62.
  • Huang Y, Blackwell PL. predicted the mechanical properties of super plastic Inconel 718 by using the ANN. 2001. p. CA90089±1453
  • Monajati H, Asefi D, Parsapour A, et al. Analysis of the effects of processing parameters on mechanical properties and formability of cold rolled low carbon steel sheets using neural networks. 2010. p. 876–881.
  • Palavar O, Özyürek D, Kalyon A. Artificial neural network prediction of aging effects on the wear behaviour of IN706 superalloy. Mater Des. 2015;82:164–172.
  • Lade Jayahari B, BaluNaik S, Singh K. Formability studies of ASS 304 and evaluation of friction for Al in deep drawing setup at elevated temperatures using LS-DYNA. J King Saud Univ Sci. 2014;26:21–31.
  • Jayahari L, Balu Naik B, Gupta AK, et al. Metallurgical studies of austenitic stainless steel 304 under warm deep drawing. J Iron Steel Int. 2014;21(12):1147–1151.
  • Standard test methods for tension testing of metallic material, designation: E8/E8M−13a. ASTM Standards Designation.
  • Zhiming L, Pradeep KG, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature. 2016;534:227–230.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.