193
Views
6
CrossRef citations to date
0
Altmetric
Review Article

Reinforced non-conventional material composites: a comprehensive review

, ORCID Icon &
Pages 333-342 | Accepted 15 Jun 2020, Published online: 25 Jun 2020

References

  • Singh R, Kumar R, Ranjan N. Sustainability of recycled ABS and PA6 by banana fiber reinforcement: thermal, mechanical and morphological properties. J Inst Eng India. 2019;100(2):351–360.
  • Biswas B, Chabri S, Mitra BC, et al. Mechanical behaviour of aluminium dispersed unsaturated polyester/jute composites for structural applications. J Inst Eng India. 2018;99(5):525–530.
  • Chandrashekhara K, Sundararaman S, Flanigan V, et al. Affordable composites using renewable materials. Mater Sci Eng A. 2005;412(1–2):2–6.
  • Ghosh A, Das S, Majumder A. A statistical analysis of cotton fiber properties. J Inst Eng Series E. 2016;97(1):1–7.
  • Jang Y, Huang J, Li K. A new formaldehyde-free wood adhesive from renewable materials. Int J Adhes Adhes. 2011;31(7):754–759.
  • Bartlett MD, Crosby AJ. High capacity, easy release adhesives from renewable materials. Adv Mater. 2014;26(21):3405–3409.
  • Agoudjil B, Benchabane A, Boudenne A, et al. Renewable materials to reduce building heat loss: characterization of date palm wood. Energy Build. 2011;43(2–3):491–497.
  • Dahlke B, Larbig H, Scherzer HD, et al. Natural fiber reinforced foams based on renewable resources for automotive interior applications. J Cell Plast. 1998;34(4):361–379.
  • Nick A, Becker U, Thoma W. Improved acoustic behavior of interior parts of renewable resources in the automotive industry. J Polym Environ. 2002;10(3):115–118.
  • Khalil HA, Aprilia NS, Bhat AH, et al. A Jatropha biomass as renewable materials for biocomposites and its applications. Renew Sust Energ Rev. 2013;22:667–685.
  • Masood, Syed H., Kalpeshkumar Mau, and W.Q. Song. “Tensile Properties of Processed FDM Polycarbonate Material.” Materials Science Forum. Edited by Jian-Feng Nie and Allan Morton, 654–656 (June 2010): 2556–59 https://doi.org/10.4028/www.scientific.net/msf.654-656.2556
  • Singh Boparai K, Singh R, Singh H. Wear behavior of FDM parts fabricated by composite material feed stock filament. Rapid Prototyping J. 2016;22(2):350–357.
  • Singh R, Kumar R, Pawanpreet SM, et al. On mechanical, thermal and morphological investigations of almond skin powder-reinforced polylactic acid feedstock filament. J Thermoplast Composite Mater. 2019;0892705719886010. https://doi.org/10.1177/0892705719886010
  • Manivasagam G, Dhinasekaran D, Rajamanickam A. Biomedical implants: corrosion and its prevention-a review. Recent Pat Corr Sci. 2010;2(1):40–54.
  • Chen H, Yuan L, Song W, et al. Biocompatible polymer materials: role of protein–surface interactions. Prog Polym Sci. 2008;33(11):1059–1087.
  • Kalita SJ, Bose S, Hosick HL, et al. Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Mater Sci Eng C. 2003;23(5):611–620.
  • Huang W, Krishnaji S, Hu X, et al. Heat capacity of spider silk-like block copolymers. Macromolecules. 2011;44(13):5299–5309.
  • Ellingsen JE. A study on the mechanism of protein adsorption to TiO2. Biomaterials. 1991;12(6):593–596.
  • Harder S, Dimaczek B, Açil Y, et al. Molecular leakage at implant-abutment connection—in vitro investigation of tightness of internal conical implant-abutment connections against endotoxin penetration. Clin Oral Investig. 2010;14(4):427–432.
  • Aloise JP, Curcio R, Laporta MZ, et al. Microbial leakage through the implant–abutment interface of Morse taper implants in vitro. Clin Oral Implants Res. 2010;21(3):328–335.
  • Groessner‐Schreiber B, Neubert A, Müller WD, et al. Fibroblast growth on surface‐modified dental implants: an in vitro study. J Biomed Mater Res A. 2003;64(4):591–599.
  • Größner‐Schreiber B, Griepentrog M, Haustein I, et al. Plaque formation on surface modified dental implants: an in vitro study. Clin Oral Implants Res. 2001;12(6):543–551.
  • Aparicio C, Manero JM, Conde F, et al. Acceleration of apatite nucleation on microrough bioactive titanium for bone‐replacing implants. J Biomed Mater Res A. 2007;82(3):521–529.
  • Hansen DC. Metal corrosion in the human body: the ultimate bio-corrosion scenario. Electrochem Soc Int. 2008;17(2):31.
  • Kersten RFMR, van Gaalen SM, de Gast A, et al. Polyetheretherketone (PEEK) cages in cervical applications: a systematic review. Spine J. 2015;15(6):1446–1460.
  • Şahin S, Cehreli MC, Yalçın E. The influence of functional forces on the biomechanics of implant-supported prostheses—a review. J Dent. 2002;30(7–8):271–282.
  • Llorens A, Lloret E, Picouet PA, et al. Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food SciTechnol. 2012;24(1):19–29.
  • Kaittanis C, Naser SA, Perez JM. Nanoparticle-mediated bacterial detection with magnetic relaxation. NanoLett. 2007;7(2):380–383.
  • Neethirajan S, Freund MS, Jayas DS, et al. Development of carbon dioxide (CO2) sensor for grain quality monitoring. Biosyst Eng. 2010;106(4):395–404.
  • Huang Y, Chen S, Bing X, et al. Nanosilver migrated into food‐simulating solutions from commercially available food fresh containers. Pack Technol Sci. 2011;24(5):291–297.
  • Echegoyen Y, Nerín C. Nanoparticle release from nano-silver antimicrobial food containers. Food Chem Toxicol. 2013;62:16–22.
  • Mackevica A, Olsson ME, Hansen SF. Silver nanoparticle release from commercially available plastic food containers into food simulants. J Nanopart Res. 2016;18(1):5.
  • Hussain S, Hess K, Gearhart J, et al. In vitro toxicity of nanoparticles in BRL3A rat liver cells. Toxicol in Vitro. 2005;19(7):975–983.
  • Burd A, Kwok CH, Hung SC, et al. A comparative study of the cytotoxicity of silver‐based dressings in monolayer cell, tissue explant, and animal models. Wound Repair Regener. 2007;15(1):94–104.
  • Park MV, Neigh AM, Vermeulen JP, et al. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials. 2011;32(36):9810–9817.
  • Liu W, Wu Y, Wang C, et al. Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology. 2010;4(3):319–330.
  • Song Z, Xiao H, Zhao Y. Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper. Carbohydr Polym. 2014;111:442–448.
  • Genovese L, Soccio M, Lotti N, et al. Design of biobased PLLA triblock copolymers for sustainable food packaging: thermo-mechanical properties, gas barrier ability and compostability. Eur Polym J. 2017;95:289–303.
  • Petersen K, Nielsen PV, Bertelsen G, et al. Potential of biobased materials for food packaging. Trends Food SciTechnol. 1999;10(2):52–68.
  • Bastioli C. Global status of the production of biobased packaging materials. Starch‐Stärke. 2001;53(8):351–355.
  • Makino Y, Hirata T. Modified atmosphere packaging of fresh produce with a biodegradable laminate of chitosan-cellulose and polycaprolactone. Postharvest Biol Technol. 1997;10(3):247–254.
  • Holton EE, Asp EH, Zottola EA. Corn-starch-containing polyethylene film used as food packaging. Cereal foods world. 1994, Vol 39, Num 4, pp 237-241.
  • Gupta RK, Dudeja P Food packaging. In: Rahul Kumar Gupta, Puja Dudeja, Amarjeet Singh Minhas. Food safety in the 21st century.Elsevier (UK), Academic Press; 2017. p. 547–553.
  • Arora A, Padua GW. Nanocomposites in food packaging. J Food Sci. 2010;75(1):R43–R49.
  • Kundu SC, Kundu B, Talukdar S, et al. Nonmulberry silk biopolymers. Biopolymers. 2012;97(6):455–467.
  • Sastry RK, Rashmi HB, Rao NH. Nanotechnology for enhancing food security in India. Food Policy. 2011;36(3):391–400.
  • Sastry RK, Rashmi HB, Rao NH, et al. Integrating nanotechnology into agri-food systems research in India: a conceptual framework. Technol Forecasting Social Change. 2010;77(4):639–648.
  • Das M, Saxena N, Dwivedi PD. Emerging trends of nanoparticles application in food technology: safety paradigms. Nanotoxicology. 2009;3(1):10–18.
  • Momin JK, Jayakumar C, Prajapati JB. Potential of nanotechnology in functional foods. Em J Food Agri. 2013;25:1.
  • Sharma C, Dhiman R, Rokana N, et al. Nanotechnology: an untapped resource for food packaging. Front Microbiol. 2017;8:1735.
  • Prasad R, Kumar V, Kumar M, eds.. Nanotechnology: food and environmental paradigm.Singapore, Springer; 2017.
  • Neethirajan S, Jayas DS. Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol. 2011;4(1):39–47.
  • Subramanian KS, Tarafdar JC. Prospects of nanotechnology in Indian farming. Ind J Agri Sci. 2011;81(10):887–893.
  • Lee JY, Tan WS, An J, et al. The potential to enhance membrane module design with 3D printing technology. J Membr Sci. 2016;499:480–490.
  • Tan, C., Toh, W. Y., Wong, G., & Lin, L. (2018). Extrusion-based 3D food printing – materials and machines. International Journal of Bioprinting, 4(2), 143-. doi:10.18063/ijb.v4i2.143.
  • Azam SR, Zhang M, Mujumdar AS, et al. Study on 3D printing of orange concentrate and material characteristics. J Food Proc Eng. 2018;41(5):e12689.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.