331
Views
11
CrossRef citations to date
0
Altmetric
Review Article

Influence of Severe Metal Forming Processes on Microstructure and Mechanical Properties of Mg alloys

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2405-2428 | Accepted 24 Jul 2020, Published online: 03 Sep 2020

References

  • Ikeo N, Nishioka M, Mukai T. Fabrication of biodegradable materials with high strength by grain refinement of Mg–0.3 at.% Ca alloys. Materials Letters. 2018;223:65–68.
  • Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials. 2006;27(9):1728–1734.
  • Henderson SE, Verdelis K, Maiti S, et al. Magnesium alloys as a biomaterial for degradable craniofacial screws. Acta Biomater. 2014;10(5):2323–2332.
  • Chen J, Tan L, Yu X, et al. Mechanical properties of magnesium alloys for medical application: A review. Journal of the Mechanical Behavior of Biomedical Materials. 2018;87:68–79.
  • Gu X-N, Zheng Y-F. A review on magnesium alloys as biodegradable materials. Frontiers of Materials Science in China. 2010;4(2):111–115.
  • Kulekci MK. Magnesium and its alloys applications in automotive industry. The International Journal of Advanced Manufacturing Technology. 2008;39(9–10):851–865.
  • Sahai N, Saxena KK, Gogoi M. Modelling and simulation for fabrication of 3D printed polymeric porous tissue scaffolds. Adv Mater Process Technol. 2020. DOI:10.1080/2374068X.2020.1728643.
  • Singh B, Singhal P, Saxena KK. Effect of transverse speed on mechanical and microstructural properties of friction stir welded aluminium AA2024-T351. Adv. Mater. Process. Technol. 2020;00:1–11.
  • Singh L, Singh B, Saxena KK. Manufacturing techniques for metal matrix composites (MMC): an overview. Adv. Mater. Process. Technol. 2020;6(2): 441–457. DOI:10.1080/2374068X.2020.1729603
  • Kumar N, Bharti A, Saxena KK. A re-analysis of effect of various process parameters on the mechanical properties of Mg based MMCs fabricated by powder metallurgy technique. Mater. Today Proc. 2020;26(2):1953–1959. doi:10.1016/j.matpr.2020.02.427.
  • Saxena KK, Pancholi V, Chaudhari GP, et al. Hot deformation behaviour and microstructural evaluation of Zr-1Nb alloy. Materials Science Forum. 2017;890:319–322.
  • Saxena KK, Yadav SD, Sonkar S, et al. Effect of Temperature and Strain Rate on Deformation Behavior of Zirconium Alloy: zr-2.5Nb. Procedia Mater. Sci. 2014. doi:10.1016/j.mspro.2014.07.035.
  • Saxena KK, Chetan K, Vaibhav K, et al. Constitutive Analysis of Zr-1Nb Alloy for Different Phase Regions. Materials Performance and Characterization. 2019;8(5):20190020.
  • Saxena KK, Dey SR, Pancholi V, et al. Processing map-microstructure evolution correlation of hot compressed near alpha titanium alloy (TiHy 600). J Alloys Compd. 2017. doi:10.1016/j.jallcom.2016.08.301.
  • Kodli BK, Karre R, Saxena KK, et al. Flow behaviour of TiHy 600 alloy under hot deformation using gleeble 3800. Adv Mater Process Technol. 2017. DOI:10.1080/2374068X.2017.1342065.
  • Tie D, Feyerabend F, Müller WD, et al. Antibacterial biodegradable Mg-Ag alloys. Eur Cells Mater. 2012;25(2013):284–298. DOI: 10.22203/eCM.v025a20
  • Li X, Chen S, Tsoi JKH. Binary titanium alloys as dental implant materials—a review. Regenerative Biomaterials. 2017;4(5):315–323.
  • Zhen Z, Liu X, Huang T, et al. Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys. Materials Science and Engineering: C. 2015;46:202–206.
  • Hosaka T, Yoshihara S, Amanina I, et al. Influence of Grain Refinement and Residual Stress on Corrosion Behavior of AZ31 Magnesium Alloy Processed by ECAP in RPMI-1640 Medium. Procedia Engineering. 2017;184:432–441.
  • Watanabe H, Mukai T, Ishikawa K. Effect of temperature of differential speed rolling on room temperature mechanical properties and texture in an AZ31 magnesium alloy. Journal of Materials Processing Technology. 2018;182(1–3):644–647.
  • Hort N, Huang Y, Fechner D, et al. Magnesium alloys as implant materials – principles of property design for Mg–RE alloys. Acta Biomater. 2010;6(5):1714–1725.
  • Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 2013;61(3):782–817.
  • Toth LS, Gu C. Ultrafine-grain metals by severe plastic deformation. Materials Characterization. 2014;92:1–14.
  • Beyerlein IJ, Tóth LS. Texture evolution in equal-channel angular extrusion. Progress in Materials Science. 2017;54(4):427–510.
  • Zhang X, Wu Y, Xue Y, et al. Biocorrosion behavior and cytotoxicity of a Mg–Gd–Zn–Zr alloy with long period stacking ordered structure. Materials Letters. 2012;86:42–45.
  • Tong LB, Li XH, Zhang HJ. Effect of long period stacking ordered phase on the microstructure, texture and mechanical properties of extruded Mg-Y-Zn alloy. Mater Sci Eng A. 2013. DOI:10.1016/j.msea.2012.10.088.
  • Xia K, Wang JT, Wu X, et al. Equal channel angular pressing of magnesium alloy AZ31. Materials Science and Engineering: A. 2017;410-411:324–327.
  • Wang H, Estrin Y, Zúberová Z. Bio-corrosion of a magnesium alloy with different processing histories. Mater Lett. 2008. DOI:10.1016/j.matlet.2007.12.052.
  • Chen B, Lin DL, Jin L, et al. Equal-channel angular pressing of magnesium alloy AZ91 and its effects on microstructure and mechanical properties. Mater Sci Eng A. 2008. DOI:10.1016/j.msea.2006.10.199.
  • Chai F, Zhang D, Li Y. Microstructures and tensile properties of submerged friction stir processed AZ91 magnesium alloy. Journal of Magnesium and Alloys. 2015;3(3):203–209.
  • Ding H, Hirai K, Kamado S. Microstructure characteristics during the multi-pass hot rolling and their effect on the mechanical properties of AM50 magnesium alloy sheet. Mater Sci Eng A. 2010. DOI:10.1016/j.msea.2010.02.068.
  • Kang Guan S, Jie Zhu S, Guo Wang L, et al. Microstructures and mechanical properties of double hot-extruded AZ80+xSr wrought alloys. Trans Nonferrous Met Soc China. 2007. English Ed. DOI:10.1016/S1003-6326(07)60240-4.
  • Shahzad M, Wagner L. Influence of extrusion parameters on microstructure and texture developments, and their effects on mechanical properties of the magnesium alloy AZ80. Materials Science and Engineering: A. 2009;506(1–2):141–147.
  • Bertolini R, Bruschi S, Ghiotti A. Large Strain Extrusion Machining under Cryogenic Cooling to Enhance Corrosion Resistance of Magnesium Alloys for Biomedical Applications. Procedia Manufacturing. 2018;26:217–227.
  • Praveen TR, Shivananda Nayaka H, Swaroop S, et al. Strength enhancement of magnesium alloy through equal channel angular pressing and laser shock peening. Applied Surface Science. 2020;512:145755.
  • Song G-L. The Effect of Texture on the Corrosion Behavior of AZ31 Mg Alloy. JOM. 2012;64(6):671–679. DOI: 10.1007/s11837-012-0341-1
  • Pawar S, Slater TJA, Burnett TL, et al. Crystallographic effects on the corrosion of twin roll cast AZ31 Mg alloy sheet. Acta Mater. 2017;133:90–99.
  • Catorceno LLC, de Abreu HFG, Padilha AF. Effects of cold and warm cross-rolling on microstructure and texture evolution of AZ31B magnesium alloy sheet. J. Magnes. Alloy. 2018. doi:10.1016/j.jma.2018.04.004.
  • Koleini S, Idris MH, Jafari H. Influence of hot rolling parameters on microstructure and biodegradability of Mg-1Ca alloy in simulated body fluid. Materials & Design. 2012. 10.1016/j.matdes.2011.06.063.
  • Guo F, Zhang D-F, Yang X-S, et al. Microstructure and texture evolution of AZ31 magnesium alloy during large strain hot rolling. (English Ed Transactions of Nonferrous Metals Society of China. 2015;251:14–21.
  • Ma R, Zhao Y, Wang Y. Grain refinement and mechanical properties improvement of AZ31 Mg alloy sheet obtained by two - stage rolling. Materials Science and Engineering: A. 2017;691:81–87.
  • Zhi C, Ma L, Huang Q, et al. Improvement of magnesium alloy edge cracks by multi-cross rolling. Journal of Materials Processing Technology. 2020;255:333–339.
  • Huang X, Suzuki K, Watazu A, et al. Microstructure and texture of Mg-Al-Zn alloy processed by differential speed rolling. J Alloys Compd. 2008. DOI:10.1016/j.jallcom.2007.02.144.
  • Kim WJ, Lee JB, Kim WY, et al. Microstructure and mechanical properties of Mg-Al-Zn alloy sheets severely deformed by asymmetrical rolling. Scr Mater. 2007. DOI:10.1016/j.scriptamat.2006.09.034.
  • Chang H, Zheng MY, Wu K, et al. Microstructure and mechanical properties of the accumulative roll bonded (ARBed) pure magnesium sheet. Materials Science and Engineering: A. 2010;527(27–28):7176–7183.
  • Kim WJ, Kim MJ, Wang JY. Superplastic behavior of a fine-grained ZK60 magnesium alloy processed by high-ratio differential speed rolling. Materials Science and Engineering: A. 2009;527(1–2):322–327.
  • Seong JW, Kim WJ. Development of biodegradable Mg-Ca alloy sheets with enhanced strength and corrosion properties through the refinement and uniform dispersion of the Mg2Ca phase by high-ratio differential speed rolling. Acta Biomater. 2015;11:531–542.
  • Kim WY, Kim WJ. Fabrication of ultrafine-grained Mg-3Al-1Zn magnesium alloy sheets using a continuous high-ratio differential speed rolling technique. Materials Science and Engineering: A. 2014;594:189–192.
  • Yadav D, Bauri R. Effect of friction stir processing on microstructure and mechanical properties of aluminium. Materials Science and Engineering: A. 2012;539:85–92.
  • Ma ZY, Mishra RS, Mahoney MW. Superplastic deformation behaviour of friction stir processed 7075 Al alloy. Acta Mater. 2002. DOI:10.1016/S1359-6454(02)00278-1.
  • Chang CI, Du XH, Huang JC. Achieving ultrafine grain size in Mg-Al-Zn alloy by friction stir processing. Scripta Materialia. 2007;57(3):209–212.
  • Feng AH, Ma ZY. Enhanced mechanical properties of Mg–Al–Zn cast alloy via friction stir processing. Scripta Materialia. 2007;56(5):397–400.
  • Chang CI, Du XH, Huang JC. Producing nanograined microstructure in Mg–Al–Zn alloy by two-step friction stir processing. Scripta Materialia. 2008;59(3):356–359.
  • Charit I, Mishra RS. Low temperature superplasticity in a friction-stir-processed ultrafine grained Al–Zn–Mg–Sc alloy. Acta Mater. 2005;53(15):4211–4223.
  • Yang Q, Xiao BL, Ma ZY. Enhanced superplasticity in friction stir processed Mg-Gd-Y-Zr alloy. J Alloys Compd. 2013. DOI:10.1016/j.jallcom.2012.10.002.
  • Ahmadkhaniha D, Järvenpää A, Jaskari M, et al. Microstructural modification of pure Mg for improving mechanical and biocorrosion properties. Journal of the Mechanical Behavior of Biomedical Materials. 2016;61:360–370.
  • Peng J, Zhang Z, Liu Z, et al. The effect of texture and grain size on improving the mechanical properties of Mg-Al-Zn alloys by friction stir processing. Scientific Reports. 2018;8(1). DOI:10.1038/s41598-018-22344-3.
  • MD FK, Karthik GM, Panigrahi SK, et al. Friction stir processing of QE22 magnesium alloy to achieve ultrafine-grained microstructure with enhanced room temperature ductility and texture weakening. Materials Characterization. 2019;147:365–378.
  • Yu L, Zhang Z, Wang K, et al. Effect of Friction Stir Processing on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy. Cailiao Daobao/Materials Rev. 2018. doi:10.11896/j.1005-023X.2018.08.016.
  • Liu F, Ji Y, Sun Z, et al. Enhancing corrosion resistance of Al-Cu/AZ31 composites synthesized by a laser cladding and FSP hybrid method. Materials and Manufacturing Processes. 2019;34(13):1458–1466.
  • Liu F, Ji Y, Sun Z, et al. Enhancing corrosion resistance and mechanical properties of AZ31 magnesium alloy by friction stir processing with the same speed ratio. J Alloys Compd. 2020. DOI:10.1016/j.jallcom.2020.154452.
  • Li T, Yan Y, Guo W, et al. Microstructure and corrosion resistance of fine-grained magnesium alloy prepared by FSP, Jinshu Rechuli/Heat Treat. Met. 2019. DOI:10.13251/j.0254-6051.2019.08.005.
  • Zhang W, Tan L, Ni D, et al. Effect of grain refinement and crystallographic texture produced by friction stir processing on the biodegradation behavior of a Mg-Nd-Zn alloy. J Mater Sci Technol. 2019. DOI:10.1016/j.jmst.2018.11.025.
  • Patle H, Dumpala R, Sunil BR. Machining Characteristics and Corrosion Behavior of Grain Refined AZ91 Mg Alloy Produced by Friction Stir Processing: role of Tool Pin Profile. Transactions of the Indian Institute of Metals. 2018;71(4):951–959.
  • Zheng FY, Wu YJ, Peng LM, et al. Microstructures and mechanical properties of friction stir processed Mg–2.0Nd–0.3Zn–1.0Zr magnesium alloy. Journal of Magnesium and Alloys. 2018;1(2):122–127.
  • Venkataiah M, Anup Kumar T, Venkata Rao K, et al. Effect of Grain Refinement on Corrosion Rate, Mechanical and Machining Behavior of Friction Stir Processed ZE41 Mg Alloy. Transactions of the Indian Institute of Metals. 2010;72(1):123–132.
  • Ho Y-H, Joshi SS, Wu T-C, et al. In-vitro bio-corrosion behavior of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites. Materials Science and Engineering: C. 2020;109:110632.
  • Liu XB, Chen RS, Han EH. Effects of ageing treatment on microstructures and properties of Mg-Gd-Y-Zr alloys with and without Zn additions. J Alloys Compd. 2008. DOI:10.1016/j.jallcom.2007.10.068.
  • Liu C, Liu C, Chen H, et al. Heat-treatable Mg-9Al-6Sn-3Zn extrusion alloy. J Mater Sci Technol. 2018. DOI:10.1016/j.jmst.2017.11.012.
  • Li RG, Nie JF, Huang GJ, et al. Development of high-strength magnesium alloys via combined processes of extrusion, rolling and ageing. Scr Mater. 2011. DOI:10.1016/j.scriptamat.2011.01.042.
  • Yu Z, Huang Y, Qiu X, et al. Fabrication of a high strength Mg-11Gd-4.5Y-1Nd-1.5Zn-0.5Zr (wt%) alloy by thermomechanical treatments. Mater Sci Eng A. 2015. DOI:10.1016/j.msea.2014.10.077.
  • Yu Z, Xu C, Meng J, et al. Microstructure evolution and mechanical properties of a high strength Mg-11.7Gd-4.9Y-0.3Zr (wt%) alloy prepared by pre-deformation annealing, hot extrusion and ageing. Materials Science and Engineering: A. 2017;703:348–358.
  • Zhang JB, Tong LB, Xu C, et al. Influence of Ca-Ce/La synergistic alloying on the microstructure and mechanical properties of extruded Mg–Zn alloy. Materials Science and Engineering: A. 2017;708:11–20.
  • Park SH, Jung J-G, Kim YM, et al. A new high-strength extruded Mg-8Al-4Sn-2Zn alloy. Materials Letters. 2015;139:35–38.
  • Huang X, Suzuki K, Chino Y. Static recrystallization and mechanical properties of Mg-4Y-3RE magnesium alloy sheet processed by differential speed rolling at 823K. Mater Sci Eng A. 2012. DOI:10.1016/j.msea.2012.01.044.
  • Bohlen J, Yi S, Letzig D, et al. Effect of rare earth elements on the microstructure and texture development in magnesium–manganese alloys during extrusion. Materials Science and Engineering: A. 2010;527(26):7092–7098.
  • Jiang H, Qiao X, Xu C, et al. Influence of size and distribution of W phase on strength and ductility of high strength Mg-5.1Zn-3.2Y-0.4Zr-0.4Ca alloy processed by indirect extrusion. Journal of Materials Science & Technology. 2018;34(2):277–283.
  • Furukawa M, Horita Z, Nemoto M, et al. Processing of metals by equal-channel angular pressing. Journal of Materials Science. 2001;36(12):2835–2843.
  • Sanusi KO, Makinde OD, Oliver GJ. Equal channel angular pressing technique for the formation of ultra-fine grained structures. South African Journal of Science. 2012;108(9/10). DOI:10.4102/sajs.v108i9/10.212.
  • Furukawa M, Horita Z, Nemoto M, et al. Review: Processing of metals by equal-channel angular pressing. Journal of Materials Science. 2001;36:2835–2843.
  • Orlov D, Raab G, Lamark TT, et al. Improvement of mechanical properties of magnesium alloy ZK60 by integrated extrusion and equal channel angular pressing. Acta Mater. 2011. DOI:10.1016/j.actamat.2010.09.043.
  • Birbilis N, Ralston KD, Virtanen S, et al. Grain character influences on corrosion of ECAPed pure magnesium. Corrosion Engineering, Science and Technology. 2008;45(3):224–230.
  • Valiev RZ, Langdon TG. Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in Materials Science. 2016;61(7):881–981.
  • Song D, Bin Ma A, Jiang J, et al. Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution. Corrosion Science. 2019;52(2):481–490.
  • Ding SX, Chang CP, Kao PW. Effects of processing parameters on the grain refinement of magnesium alloy by equal-channel angular extrusion. Metallurgical and Materials Transactions A. 2010;40(2):415–425.
  • Biswas S, Singh Dhinwal S, Suwas S. Room-temperature equal channel angular extrusion of pure magnesium. Acta Mater. 2010;58(9):3247–3261.
  • Huot J. Equal channel angular pressing, in: springerBriefs. Appl. Sci. Technol. 2016. doi:10.1007/978-3-319-35107-0_5.
  • Iwahashi Y, Horita Z, Nemoto M, et al. The process of grain refinement in equal-channel angular pressing. Acta Mater. 1998;46(9):3317–3331.
  • Muralidhar A, Narendranath S, Shivananda Nayaka H. Effect of equal channel angular pressing on AZ31 wrought magnesium alloys. Journal of Magnesium and Alloys. 2013;1(4):336–340.
  • Saravanan M, Pillai RM, Pai BC, et al. Equal channel angular pressing of pure aluminium - An analysis. Bull Mater Sci. 2006;29(7):679–684.
  • Shin DH, Kim I, Kim J, et al. Microstructure development during equal-channel angular pressing of titanium. Acta Mater. 2003;51(4):983–996.
  • Bryła K, Horky J, Krystian M, et al. Microstructure, mechanical properties, and degradation of Mg-Ag alloy after equal-channel angular pressing. Materials Science and Engineering: C. 2020;109:110543.
  • Minárik P, Jablonská E, Král R, et al. Effect of equal channel angular pressing on in vitro degradation of LAE442 magnesium alloy. Materials Science and Engineering: C. 2017;73:736–742.
  • Li W, Shen Y, Shen J, et al. In vitro and in vivo studies on pure Mg, Mg–1Ca and Mg–2Sr alloys processed by equal channel angular pressing. Nano Mater. Sci. 2020. doi:10.1016/j.nanoms.2020.03.004.
  • Roodposhti PS, Farahbakhsh N, Sarkar A, et al. Microstructural approach to equal channel angular processing of commercially pure titanium—A review. Transactions of Nonferrous Metals Society of China. 2015;25(5):1353–1366.
  • Razavi M, Huang Y. Effect of hydroxyapatite (HA) nanoparticles shape on biodegradation of Mg/HA nanocomposites processed by high shear solidification/equal channel angular extrusion route. Materials Letters. 2020;267:127541.
  • Mostaed E, Vedani M, Hashempour M, et al. Influence of ECAP process on mechanical and corrosion properties of pure Mg and ZK60 magnesium alloy for biodegradable stent applications. Biomatter. 2014;4(1):e28283.
  • Hosaka T, Yoshihara S, Amanina I, et al. Influence of Grain Refinement and Residual Stress on Corrosion Behavior of AZ31 Magnesium Alloy Processed by ECAP in RPMI-1640 Medium. Procedia Eng. 2017;184:432–441.
  • Damayanti I, Latief BS, Latif A, et al. Examination of Biodegradable Magnesium Screw Processed by Equal Channel Angular Pressing: A Novel In Vivo Study in Rabbits. Journal of Biomimetics, Biomaterials and Biomedical Engineering. 2018;38:31–37.
  • Zhang J, Kang Z, Wang F. Mechanical properties and biocorrosion resistance of the Mg-Gd-Nd-Zn-Zr alloy processed by equal channel angular pressing. Mater Sci Eng C. 2016. DOI:10.1016/j.msec.2016.05.118.
  • Martynenko N, Lukyanova E, Serebryany V, et al. Effect of equal channel angular pressing on structure, texture, mechanical and in-service properties of a biodegradable magnesium alloy. Materials Letters. 2019;238:218–221.
  • Krajňák T, Minárik P, Stráská J, et al. Influence of the initial state on the microstructure and mechanical properties of AX41 alloy processed by ECAP. J Mater Sci. 2019. DOI:10.1007/s10853-018-3033-6.
  • Ratna Sunil B, Sampath Kumar TS, Chakkingal U, et al. In vitro and in vivo studies of biodegradable fine grained AZ31 magnesium alloy produced by equal channel angular pressing. Materials Science and Engineering: C. 2016;59:356–367.
  • Sepahi-Boroujeni S, Fereshteh-Saniee F. The influences of the expansion equal channel angular extrusion operation on the strength and ductility of AZ80 magnesium alloy. Materials Science and Engineering: A. 2015;636:249–253.
  • Xu Y, Hu L-X, Sun Y, et al. Microstructure and mechanical properties of AZ61 magnesium alloy prepared by repetitive upsetting-extrusion. Transactions of Nonferrous Metals Society of China. 2015;25(2):381–388.
  • Song D, Li C, Liang N, et al. Simultaneously improving corrosion resistance and mechanical properties of a magnesium alloy via equal-channel angular pressing and post water annealing. Mater Des. 2019. DOI:10.1016/j.matdes.2019.107621.
  • Jie Bin BS, Tan YT, Fong KS, et al. Effect of severe plastic deformation and post-annealing on the mechanical properties and bio-corrosion rate of AZ31 magnesium alloy. Procedia Eng. 2017;207:1475–1480.
  • Zhang CZ, Zhu SJ, Wang LG, et al. Microstructures and degradation mechanism in simulated body fluid of biomedical Mg-Zn-Ca alloy processed by high pressure torsion. Mater Des. 2016. DOI:10.1016/j.matdes.2016.01.072.
  • Parfenov EV, Kulyasova OB, Mukaeva VR, et al. Influence of ultra-fine grain structure on corrosion behaviour of biodegradable Mg-1Ca alloy. Corrosion Science. 2020;163:108303.
  • Edalati K, Yamamoto A, Horita Z, et al. High-pressure torsion of pure magnesium: evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain. Scripta Materialia. 2011;64(9):880–883.
  • Hanna A, Azzeddine H, Lachhab R, et al. Evaluating the textural and mechanical properties of an Mg-Dy alloy processed by high-pressure torsion. J Alloys Compd. 2019. DOI:10.1016/j.jallcom.2018.11.109.
  • Gao JH, Guan SK, Ren ZW, et al. Homogeneous corrosion of high pressure torsion treated Mg-Zn-Ca alloy in simulated body fluid. Mater Lett. 2011. DOI:10.1016/j.matlet.2010.11.015.
  • Panda S, Toth LS, Zou J, et al. Effect of strain heterogeneities on microstructure, texture, hardness, and H-activation of high-pressure torsion Mg consolidated from different powders. Materials (Basel). 2018;11(8):1335.
  • Panda S, Fundenberger JJ, Zhao Y, et al. Effect of initial powder type on the hydrogen storage properties of high-pressure torsion consolidated Mg. Int J Hydrogen Energy. 2017;42(35):22438–22448.
  • Khajouei-Nezhad M, Paydar MH, Ebrahimi R, et al. Microstructure and mechanical properties of ultrafine-grained aluminum consolidated by high-pressure torsion. Materials Science and Engineering: A. 2017;682:501–508.
  • Zhilyaev AP, Gimazov AA, Raab GI, et al. Using high-pressure torsion for the cold-consolidation of copper chips produced by machining. Materials Science and Engineering: A. 2008;486(1–2):123–126.
  • de Castro MM, Carvalho AP, Pereira PHR, et al. Consolidation of magnesium and magnesium alloy machine chips using high-pressure torsion. Mater Sci Forum. 2018;941:851–856.
  • Ashida M, Horita Z, Kita T, et al. Production of Al/Al 2O3 Nanocomposites through Consolidation by High-Pressure Torsion. Mater Trans. 2012;53(1):13–16.
  • Castro MM, Sabbaghianrad S, Pereira PHR, et al. A magnesium-aluminium composite produced by high-pressure torsion. J Alloys Compd. 2019. DOI:10.1016/j.jallcom.2019.07.007.
  • Zhang C, Guan S, Wang L, et al. The microstructure and corrosion resistance of biological Mg-Zn-Ca alloy processed by high-pressure torsion and subsequently annealing. J Mater Res. 2017. DOI:10.1557/jmr.2017.55.
  • Lukyanova EA, Martynenko NS, Shakhova I, et al. Strengthening of age-hardenable WE43 magnesium alloy processed by high pressure torsion. Materials Letters. 2016;170:5–9.
  • Čížek J, Hruška P, Vlasák T, et al. Microstructure development of ultra fine grained Mg-22 wt%Gd alloy prepared by high pressure torsion. Materials Science and Engineering: A. 2017;704:181–191.
  • Kulyasova OB, Islamgaliev RK, Zhao Y, et al. Enhancement of the Mechanical Properties of an Mg-Zn-Ca Alloy Using High-Pressure Torsion. Advanced Engineering Materials. 2015;17(12):1738–1741.
  • Alizadeh R, Mahmudi R, Ngan AHW, et al. Superplasticity of a nano-grained Mg–Gd–Y–Zr alloy processed by high-pressure torsion. Materials Science and Engineering: A. 2016;651:786–794.
  • Dobatkin SV, Rokhlin LL, Lukyanova EA, et al. Structure and mechanical properties of the Mg-Y-Gd-Zr alloy after high pressure torsion. Materials Science and Engineering: A. 2016;667:217–223.
  • Geng L, Zhang BP, Li AB, et al. Microstructure and mechanical properties of Mg–4.0Zn–0.5Ca alloy. Materials Letters. 2008;63(5):557–559.
  • Al-Zubaydi ASJ, Zhilyaev AP, Wang SC, et al. Superplastic behaviour of AZ91 magnesium alloy processed by high-pressure torsion. Materials Science and Engineering: A. 2015;637:1–11.
  • Torbati-Sarraf SA, Langdon TG. Properties of a ZK60 magnesium alloy processed by high-pressure torsion. Journal of Alloys and Compounds. 2014;613:357–363.
  • Al-Zubaydi ASJ, Zhilyaev AP, Wang SC, et al. Evolution of microstructure in AZ91 alloy processed by high-pressure torsion. Journal of Materials Science. 2016;51(7):3380–3389.
  • Harai Y, Kai M, Kaneko K, et al. Microstructural and mechanical characteristics of AZ61 magnesium alloy processed by high-pressure torsion. MATERIALS Transactions. 2008;49(1):76–83.
  • Kai M, Horita Z, Langdon TG. Developing grain refinement and superplasticity in a magnesium alloy processed by high-pressure torsion. Materials Science and Engineering: A. 2008;488(1–2):117–124.
  • Sabbaghianrad S, Torbati-Sarraf SA, Langdon TG. An investigation of the limits of grain refinement after processing by a combination of severe plastic deformation techniques: A comparison of Al and Mg alloys. Materials Science and Engineering: A. 2018;712:373–379.
  • Avvari M, S N, Able M. Microstructure evolution in AZ61 alloy processed by equal channel angular pressing. Advances in Mechanical Engineering. 2016;8(6):168781401665182.
  • Liu DX, Pang X, Li DL, et al. Microstructural Evolution and Properties of a Hot Extruded and HPT-Processed Resorbable Magnesium WE43 Alloy. Advanced Engineering Materials. 2017;19(11):1700723.
  • Bryła K, Morgiel J, Faryna M, et al. Effect of high-pressure torsion on grain refinement, strength enhancement and uniform ductility of EZ magnesium alloy. Materials Letters. 2018;212:323–326.
  • Martynenko NS, Lukyanova EA, Serebryany VN, et al. Increasing strength and ductility of magnesium alloy WE43 by equal-channel angular pressing. Materials Science and Engineering: A. 2018;712:625–629.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.