122
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Selection of appropriate process inputs for turning Ti-6Al-4V alloy under hybrid Al2O3-MWCNT nano-fluid based MQL

, &
Pages 380-400 | Accepted 17 Aug 2020, Published online: 03 Sep 2020

References

  • Cui C, Hu BM, Zhao L, et al. Titanium alloy production technology, market prospects and industry development. Mater Des. 2011;32(3):1684–1691.
  • Veiga C, Davim JP, Loureiro AJR. Review on machinability of titanium alloys: the process perspective. Rev Adv Mater Sci. 2013;34:148–164.
  • Mondal A, Roy P, Mitra S. Experimental investigation on electro discharge machining of Ti6Al4V alloy. Adv Mater Process Technol. 2020. DOI:10.1080/2374068X.2020.1759913
  • Işik B, Kentli A. The prediction of surface temperature in drilling of Ti6Al4V. Arch Metall Mater. 2014;59(2):467–471.
  • Vijay S, Krishnaraj V. Machining parameters optimization in end milling of Ti-6A1-4V. Procedia Eng. 2013;64:1079–1088.
  • Raghavendra MJ, Ramachandra CG, Srinivas TR, et al. Optimization of surface roughness in turning operation in machining of TI-6AL-4V (Titanium Grade −5). IOP Conf Ser Mater Sci Eng. 2018;376:012118.
  • Hassanpour H, Sadeghi MH, Rezaei H, et al. Experimental study of cutting force, microhardness, surface roughness, and burr size on micromilling of Ti6Al4V in minimum quantity lubrication. Mater Manuf Process. 2016;31(13):1654–1662.
  • Ahmed LS, Pradeep Kumar M. Investigation of cryogenic cooling effect in reaming Ti-6AL-4V alloy. Mater Manuf Process. 2017. DOI:10.1080/10426914.2016.1221088
  • Mia M, Dhar NR. Influence of single and dual cryogenic jets on machinability characteristics in turning of Ti-6Al-4V. Proc Inst Mech Eng Part B J Eng Manuf. 2019;233(3):711–726.
  • Yasa E, Pilatin S, Çolak O. Overview of cryogenic cooling in machining of Ti alloys and a case study. J Prod Eng. 2012.
  • Revuru RS, Posinasetti NR, Vsn VR, et al. Application of cutting fluids in machining of titanium alloys—a review. Int J Adv Manuf Technol. 2017;91(5–8):2477–2498.
  • Jadhav PA, Deivanathan R. Experimental analysis of the influence of lubrication strategy and machining parameters on surface roughness & tool wear in milling of TI-6AL-4V using taguchi based grey relational analysis. Int J Mech Prod Eng Res Dev. 2019. DOI:10.24247/ijmperdjun2019121
  • Masoudi S, Vafadar A, Hadad M, et al. Experimental investigation into the effects of nozzle position, workpiece hardness, and tool type in MQL turning of AISI 1045 steel. Mater Manuf Process. 2018;33(9):1011–1019.
  • Hegab H, Umer U, Deiab I, et al. Performance evaluation of Ti–6Al–4V machining using nano-cutting fluids under minimum quantity lubrication. Int J Adv Manuf Technol. 2018. DOI:10.1007/s00170-017-1527-z
  • Park KH, Yang GD, Suhaimi MA, et al. The effect of cryogenic cooling and minimum quantity lubrication on end milling of titanium alloy Ti-6Al-4V. J Mech Sci Technol. 2015;29(12):5121–5126.
  • Duc TM, Long TT, Chien TQ. Performance Evaluation of MQL Parameters Using Al2O3 and MoS2 Nanofluids in Hard Turning 90CrSi Steel. Lubricants 2019;7:40(1–17).
  • Zhang X, Li C, Zhang Y, et al. Performances of Al2O3/SiC hybrid nanofluids in minimum-quantity lubrication grinding. Int J Adv Manuf Technol. 2016;86(9–12):3427–3441.
  • Sultana MN, Dhar NR, Zaman PBA. Review on different cooling/lubrication techniques in metal cutting. Am J Mech Appl. 2019;7:71–87.
  • Jamil M, Khan AM, Hegab H, et al. Effects of hybrid Al2O3-CNT nanofluids and cryogenic cooling on machining of Ti–6Al–4V. Int J Adv Manuf Technol. 2019;102(9–12):3895–3909.
  • Khatri A, Jahan MP. Investigating tool wear mechanisms in machining of Ti-6Al-4V in flood coolant, dry and MQL conditions. Procedia Manuf. 2018;26:434–445.
  • Nam J, Kim JW, Kim JS, et al. Parametric analysis and optimization of nanofluid minimum quantity lubrication micro-drilling process for titanium alloy (Ti-6Al-4V) using response surface methodology and desirability function. Procedia Manuf. 2018;26:403–414.
  • Zaman PB, Dhar NR. Design and evaluation of an embedded double jet nozzle for MQL delivery intending machinability improvement in turning operation. J Manuf Process. 2019;44:179–196.
  • Zaman PB, Dhar NR. Multi-objective optimization of double-jet MQL system parameters meant for enhancing the turning performance of Ti–6Al–4V alloy. Arab J Sci Eng. 2020. 10.1007/s13369-020-04806-x
  • Asadi A, Asadi M, Rezaniakolaei A, et al. Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: an experimental and theoretical investigation. Int J Heat Mass Transf. 2018;117:474–486.
  • Chen L, Xie H, Li Y, et al. Nanofluids containing carbon nanotubes treated by mechanochemical reaction. Thermochim Acta. 2008;477(1–2):21–24.
  • Sharma P, Sidhu BS, Sharma J. Investigation of effects of nanofluids on turning of AISI D2 steel using minimum quantity lubrication. J Clean Prod. 2015;108:72–79.
  • Venkata Ramana M. Optimization and influence of process parameters on surface roughness in turning of titanium alloy under different lubricant conditions. Elsevier Ltd Mater Today Proc. 2017;48:8328–8335.
  • Sartori S, Taccin M, Pavese G, et al. Wear mechanisms of uncoated and coated carbide tools when machining Ti6Al4V using LN2 and cooled N2. Int J Adv Manuf Technol. 2018;95(1–4):1255–1264.
  • Kechagias JD, Aslani KE, Fountas NA, et al. A comparative investigation of Taguchi and full factorial design for machinability prediction in turning of a titanium alloy. Meas J Int Meas Confed. 2020;151:107213.
  • Asadi A, Asadi M, Rezaniakolaei A, et al. Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: an experimental and theoretical investigation. Int J Heat Mass Transf. 2018;117:474–486.
  • Ogedengbe TS, Okediji AP, Yussouf AA, et al. The effects of heat generation on cutting tool and machined workpiece. J Phys Conf Ser. 2019;1378:022012. Institute of Physics Publishing.
  • Mital A, Mehta M. Surface finish prediction models for fine turning. Int J Prod Res. 1988;26(12):1861–1876.
  • Montgomery DC. Design and analysis of experiments: Eighth edition, Hoboken, NJ : John Wiley & Sons, Inc.,2013.
  • Behera SK, Meena H, Chakraborty S, Meikap BC. Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. Int J Min Sci Technol 2018. doi:10.1016/j.ijmst.2018.04.014.
  • Manohar M, Jomy Joseph TS. Application of Box Behnken design to optimize the parameters for turning Inconel 718 using coated carbide tools. Int J Sci Eng Res. 2013. D O I: 1 0 .4 314 / t jpr .v1 1i5.2
  • Gupta MK, Sood PK, Sharma VS. Machining parameters optimization of titanium alloy using response surface methodology and particle swarm optimization under minimum-quantity lubrication environment. Mater Manuf Process. 2016;31(13):1671–1682.
  • Zaman P, Dhar N. Multi-criteria process optimization for better machinability in turning medium carbon steel using composite desirability approach. Int J Manuf Res. 2021;16(1):1.
  • Derringer G, Suich R. Simultaneous Optimization of Several Response Variables. J Qual Technol. 1980;12(4):214–219.
  • Derringer GC. A balancing act: optimizing a product’s properties. Qual Prog. 1994;27:51–58.
  • Ehrgott M. Multicriteria optimization: Second edition. Springer. 2005.
  • Zaman PB, Saha S, Dhar NR. Hybrid Taguchi-GRA-PCA approach for multi-response optimisation of turning process parameters under HPC condition. Int J Mach Mach Mater. 2020;22:281–308.
  • Kumar R, Kumar Sahooa A, Satyanarayana K, et al. Some studies on cutting force and temperature in machining Ti-6AL-4V alloy using regression analysis and ANOVA. Int J Ind Eng Comput. 2013. DOI:10.5267/j.ijiec.2013.03.002
  • Abukhshim NA, Mativenga PT, Sheikh MA. Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining. Int J Mach Tools Manuf. 2006;46(7–8):782–800.
  • Stephenson DA, Agapiou JS. Metal cutting theory and practice. Third ed. 2016. DOI:10.1201/b19559
  • Pal A, Choudhury SK, Chinchanikar S. Machinability assessment through experimental investigation during hard and soft turning of hardened steel. Procedia Mater Sci. 2014;6:80–91.
  • Shah J, Ranjan M, Davariya V, et al. Temperature-dependent thermal conductivity and viscosity of synthesized a-alumina nanofluids. Appl Nanosci. 2017;7(8):803–813.
  • Rao SN, Satyanarayana B, Venkatasubbaiah K. Experimental estimation of tool wear and cutting temperatures in mql using cutting fluids with cnt inclusion. Int J Eng Sci Technol. 2011; 3(4):2928-2931.
  • Grzesik W, Nieslony P. A computational approach to evaluate temperature and heat partition in machining with multilayer coated tools. Int J Mach Tools Manuf. 2003;43(13):1311–1317.
  • Zaman PB, Sultana N, Dhar NR. Quantifying the effects of cooling condition, tool type and cutting parameters on machinability of turning AISI 4140 steel using full factorial DOE. J Prod Syst Manuf Sci. 2020;1(1–17):0009.
  • Mia M, Dhar NR. Prediction of surface roughness in hard turning under high pressure coolant using Artificial neural network. Meas J Int Meas Confed. 2016;92:464–474.
  • Che-Haron CH, Jawaid A. The effect of machining on surface integrity of titanium alloy Ti-6% Al-4% v. J Mater Process Technol. 2005;166(2):188–192.
  • Thandra SK, Choudhury SK. Effect of cutting parameters on cutting force, surface finish and tool wear in hot machining. Int J Mach Mach Mater. 2010;7:278.
  • Nithyanandam J, Das SL, Palanikumar K. Influence of cutting parameters in machining of titanium alloy. Indian J Sci Technol. 2015;8(S8):556.
  • Virdi RL, Chatha SS, Singh H. Processing characteristics of different vegetable oil-based nanofluid MQL for grinding of Ni-Cr alloy. Adv Mater Process Technol. 2020. DOI:10.1080/2374068X.2020.1800312
  • Lee GJ, Park JJ, Lee MK, et al. Stable dispersion of nanodiamonds in oil and their tribological properties as lubricant additives. Appl Surf Sci. 2017;415:24–27.
  • Srikant RR, Prasad MMS, Amrita M, et al. Nanofluids as a potential solution for minimum quantity lubrication: a review. Proc Inst Mech Eng Part B J Eng Manuf. 2014;228(1):3–20.
  • Rahmati B, Sarhan AAD, Sayuti M. Morphology of surface generated by end milling AL6061-T6 using molybdenum disulfide (MoS2) nanolubrication in end milling machining. J Clean Prod. 2014;66:685–691.
  • Qin S, Li Z, Guo G, et al. Analysis of minimum quantity lubrication (MQL) for different coating tools during turning of TC11 titanium alloy. Materials (Basel). 2016;9(10):804.
  • Patil DK, Sawant SM. A parametric study on performance of titanium alloy using coated and uncoated carbide insert in CNC turning. International Journal of Advanced Mechanical Engineering.2014;5:557–564.
  • Lin ZC, Ho CY. Analysis and application of grey relation and ANOVA in chemical-mechanical polishing process parameters. Int J Adv Manuf Technol. 2003;21(1):10–14.
  • de Myttenaere A, Golden B, Le Grand B, et al. Mean absolute percentage error for regression models. Neurocomputing. 2016;192:38–48.
  • Boyd G, Na D, Li Z, et al. Influent forecasting for wastewater treatment plants in North America. Sustain. 2019;11(6):1764.
  • Gupta MK, Mia M, Pruncu CI, et al. Modeling and performance evaluation of Al2O3, MoS2 and graphite nanoparticle-assisted MQL in turning titanium alloy: an intelligent approach. J Brazilian Soc Mech Sci Eng. 2020;42. DOI:10.1007/s40430-020-2256-z.
  • Xiong Y, Wu J, Deng C, et al. Machining process parameters optimization for heavy-duty CNC machine tools in sustainable manufacturing. Int J Adv Manuf Technol. 2016;87(5–8):1237–1246.
  • Abubakr M, Abbas AT, Tomaz I, et al. Sustainable and smart manufacturing: an integrated approach. Sustain. 2020;12(6):2280.
  • Amrita M, Rukmini Srikant R, Venkataramana VSN. Optimisation of cutting parameters for cutting temperature and tool wear in turning AISI4140 under different cooling conditions. Adv Mater Process Technol. 2020. DOI:10.1080/2374068X.2020.1795794
  • Ola OT, Valdez RL, Oluwasegun KM, et al. Process variable optimization in the cold metal transfer weld repair of aerospace ZE41A-T5 alloy using central composite design. Int J Adv Manuf Technol. 2019;105(11):4827–4835.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.