229
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Hydrothermally grown nano-WO3 electrochromic film: structural and Raman spectroscopic study

ORCID Icon, , , , , , , , & ORCID Icon show all
Pages 970-976 | Accepted 07 Oct 2020, Published online: 19 Oct 2020

References

  • Chaudhary A, Pathak DK, Tanwar M, et al. Polythiophene-NanoWO3 bilayer as electrochromic infrared filter: a transparent heat shield. J Mater Chem C. 20208:1773-1780
  • Pathak DK, Chaudhary A, Tanwar M, et al. Nano-Cobalt oxide/ viologen hybrid solid state device: electrochromism beyond chemical cell. Appl Phys Lett. 2020;116(14):141901.
  • Mjejri I, Rougier A, Gaudon M. Low-cost and facile synthesis of the vanadium oxides V2O3, VO2, and V2O5 and their magnetic, thermochromic and electrochromic properties. Inorg Chem. 2017;56(3):1734–1741.
  • Kumar R, Pillai RG, Pekas N, et al. Spatially resolved Raman spectroelectrochemistry of solid-state polythiophene/viologen memory devices. J Am Chem Soc. 2012;134(36):14869–14876.
  • Chaudhary A, Pathak DK, Mishra S, et al. Enhancing Viologen’s electrochromism by incorporating thiophene: a step toward all-organic flexible device. Phys Status Solidi A. 2019; 216(2):1800680. DOI:10.1002/pssa.201800680.
  • Chaudhary A, Pathak DK, Tanwar M, et al. Prussian blue-viologen inorganic–organic hybrid blend for improved electrochromic performance. ACS Appl Electron Mater. 2019; 1(6):892-899. DOI:10.1021/acsaelm.9b00089.
  • Pathak DK, Chaudhary A, Mishra S, et al. Precursor concentration dependent hydrothermal NiO nanopetals: tuning morphology for efficient applications. Superlattices Microstruct. 2019;125:138–143.
  • Sagdeo PR, Maidul S, Shinde DD, et al. Crystallographic phase control of TiO2 in thin films deposited by asymmetric bipolar pulsed DC sputtering. AIP Conf Proc. 2012;1451(1):121–123.
  • Sonali K, Narasimhan KL, Meghan P, et al. Room temperature chemical vapor deposition process for the deposition of poly(Phenylenevinylene) in the manufacture of organic based electronic devices. June 8 2007. https://www.allindianpatents.com/patents/215159-an-improved-room-temperature-chemical-vapour-deposition-process-for-the-deposition-of-poly-phenylene-vinylene-in-the-manufacture-of-organic-based-electronic-devices
  • Mishra S, Yogi P, Saxena SK, et al. Fast electrochromic display: tetrathiafulvalene–graphene nanoflake as facilitating materials. J Mater Chem C. 2017;5(36):9504–9512.
  • Mishra S, Lambora S, Yogi P, et al. Organic nanostructures on inorganic ones: an efficient electrochromic display by design. ACS Appl Nano Mater. 2018;1(7):3715–3723.
  • Mishra S, Yogi P, Saxena SK, et al. Significant field emission enhancement in ultrathin nano-thorn covered nio nano-petals. J Mater Chem C. 2017;5(37):9611–9618.
  • Mishra S, Yogi P, Saxena S, et al. Construction of well aligned highly dense cobalt nanoneedles for efficient device application. Adv Mater Process Technol. 2017;3(4):627–631.
  • Pathak DK, Chaudhary A, Tanwar M, et al. Chronopotentiometric deposition of nanocobalt oxide for electrochromic auxiliary active electrode application. Phys Status Solidi A 2020; 217(19):2000173
  • Dayanand, Chahar M, Pathak DK, et al. Deposition of single phase polycrystalline α-Fe2O3 thin film on silicon and silica substrates by spray pyrolysis. Silicon. 2020. DOI:10.1007/s12633-020-00727-4.
  • Saxena SK, Kumar V, Rai HM, et al. Study of porous silicon prepared using Metal-Induced Etching (MIE): a comparison with Laser-Induced Etching (LIE). Silicon. 2017;9(4):483–488.
  • Zheng JY, Song G, Hong J, et al. Facile fabrication of WO3 nanoplates thin films with dominant crystal facet of (002) for water splitting. Cryst Growth Des. 2014;14(11):6057–6066.
  • Wang P, Lu N, Su Y, et al. Fabrication of WO3@g-C3N4 with Core@shell nanostructure for enhanced photocatalytic degradation activity under visible light. Appl Surf Sci. 2017;423:197–204.
  • Lai CW, Sreekantan S. Fabrication of WO3 nanostructures by anodization method for visible-light driven water splitting and photodegradation of methyl orange. Mater Sci Semicond Process. 2013;16(2):303–310.
  • Choi Y-G, Sakai G, Shimanoe K, et al. Wet process-based fabrication of WO3 thin film for NO2 detection. Sens Actuators B Chem. 2004;101(1):107–111.
  • Santato C, Odziemkowski M, Ulmann M, et al. Crystallographically oriented mesoporous WO3 films:  synthesis, characterization, and applications. J Am Chem Soc. 2001;123(43):10639–10649.
  • Lee S-H, Deshpande R, Parilla PA, et al. Crystalline WO3 nanoparticles for highly improved electrochromic applications. Adv Mater. 2006;18(6):763–766.
  • Ji Y, Yang Y, Lee S-K, et al. Flexible nanoporous WO3–x nonvolatile memory device. ACS Nano. 2016;10(8):7598–7603.
  • Chen Q, Li J, Li X, et al. Visible-light responsive photocatalytic fuel cell based on WO3/W photoanode and Cu2O/Cu photocathode for simultaneous wastewater treatment and electricity generation. Environ Sci Technol. 2012;46(20):11451–11458.
  • Yao Y, Zhao Q, Wei W, et al. WO3 quantum-dots electrochromism. Nano Energy. 2020;68:104350.
  • Raman C. A new radiation. Indian J Phys. 1928;2:387–398.
  • Tanwar M, Pathak DK, Chaudhary A, et al. Mapping longitudinal inhomogeneity in nanostructures using cross-sectional spatial Raman imaging. J Phys Chem C. 2020;124(11):6467–6471.
  • Raman CV, Krishnan KS, New A. Type of secondary radiation. Nature. 1928;121(3048):501–502.
  • Chaudhary A, Pathak DK, Tanwar M, et al. Tracking dynamic doping in a solid-state electrochromic device: Raman microscopy validates the switching mechanism. Anal Chem. 2020;92(8):6088–6093.
  • Gupta V, Pathak DK, Chaudhary S, et al. Raman imaging for measuring homogeneity of dry binary blend: combining microscopy with spectroscopy for technologists. Anal Sci Adv. 2020;1(2):89–96. .
  • Tanwar M, Pathak DK, Chaudhary A, et al. Unintended deviation of fermi level from band edge in fractal silicon nanostructures: consequence of Dopants’ zonal depletion. J Phys Chem C. 2020;124(30):16675–16679.
  • Anithaa AC, Lavanya N, Asokan K, et al. WO3 nanoparticles based direct electrochemical dopamine sensor in the presence of ascorbic acid. Electrochim Acta. 2015;167:294–302.
  • Inamdar AI, Kim J, Jo Y, et al. Highly efficient electro-optically tunable smart-supercapacitors using an oxygen-excess nanograin tungsten oxide thin film. Sol Energy Mater Sol Cells. 2017;166:78–85.
  • Yoon H, Mali MG, Kim M, et al. Electrostatic spray deposition of transparent tungsten oxide thin-film photoanodes for solar water splitting. CatalToday. 2016;260:89–94.
  • Hu X, Xu P, Gong H, et al. Synthesis and characterization of WO3/graphene nanocomposites for enhanced photocatalytic activities by one-step in-situ hydrothermal reaction. Materials (Basel). 2018;11(1). DOI:10.3390/ma11010147.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.