109
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Mechanical, Microstructure and Wear properties of Al 6113 Fly Ash reinforced Composites: Comparison of as-cast and Heat-treated Conditions

, , ORCID Icon, , , & show all
Pages 2603-2618 | Accepted 06 May 2021, Published online: 02 Jun 2021

References

  • Engler O, Hirsch J. Texture control by thermomechanical processing of AA6xxx Al–Mg–Si sheet alloys for automotive applications—a review. Mater Sci Eng A. 2002;336(1–2):249–262.
  • Cui S, Mishra R, Jung IH. Thermodynamic analysis of 6xxx series Al alloys: phase fraction diagrams. J Min Metall Sect B. 2018;54(1):119–131.
  • Mukhopadhyay P. Alloy designation, processing, and use of AA6XXX series aluminium alloys. Isrn Metall. 2012;2012:1–15.
  • Lin G, Zhang HW, Li HZ, et al. Effects of Mg content on microstructure and mechanical properties of SiCp/Al-Mg composites fabricated by semi-solid stirring technique. Trans Nonferrous Met Soc China. 2010;20(10):1851–1855.
  • Rana RS, Purohit R, Das S. Reviews on the influences of alloying elements on the microstructure and mechanical properties of aluminum alloys and aluminum alloy composites. Int J Sci Res Publ. 2012;2(6):1–7.
  • Ervina Efzan MN, Kong HJ, Kok CK. Effect of alloying element on Al-Si alloys. In: Advanced materials research. Vol. 845. Switzerland: Trans Tech Publications Ltd; 2014. p. 355–359. http://dx.doi.org/10.4028/www.scientific.net/AMR.845.355
  • Lumley RN, Gunasegaram DR, Gershenzon M, et al. Effect of alloying elements on heat treatment response of aluminium high pressure die castings. Int Heat Treat Surface Eng. 2010;4(1):25–32.
  • Möller H, Daswa P, Govender G. Al-Mg-Si-(Cu) 6xxx series alloy selection for rheo-high pressure die casting. In: Advanced Materials Research. Vol. 1019. Switzerland: Trans Tech Publications Ltd; 2014. p. 61–66. http://dx.doi.org/10.4028/www.scientific.net/AMR.845.355
  • Guo MX, Zhang XK, Zhang JS, et al. Effect of Zn addition on the precipitation behaviors of Al–Mg–Si–Cu alloys for automotive applications. J Mater Sci. 2017;52(3):1390–1404.
  • Hirsch J. Recent development in aluminium for automotive applications. Trans Nonferrous Met Soc China. 2014;24(7):1995–2002.
  • Avinash L, Ram Prabhu T, Bontha S. The effect on the dry sliding wear behavior of gravity cast A357 reinforced with dual size silicon carbide particles. Appl Mech Mater. 2016;829(2016):83–89.
  • Avinash L, Ram Prabhu T, Parthasarathy A, et al. Wear and mechanical behaviour of Hypo-eutectic Al-7% Si-0.5% Mg alloy (A357) reinforced with Al2O3 particles. Appl Mech Mater. 2016;829(2016):66–72.
  • Parthasarathy A, Avinash L, Varun Kumar KN, et al. Fabrication and characterization of Al-0.4% Si-0.5% Mg-SiCp using permanent mould casting technique. Applied Mechanics and Materials. 2017;867:34–40.
  • Sharma P, Paliwal K, Dabra V, et al. Influence of silicon carbide/graphite addition on properties of AA6082 reinforced composites. Aust J Mech Eng. 2018;1–9. DOI:10.1080/14484846.2018.1505995
  • Lakshmikanthan A, Bontha S, Krishna M, et al. Microstructure, mechanical and wear properties of the A357 composites reinforced with dual sized SiC particles. J Alloys Compd. 2019;786:570–580.
  • Lakshmikanthan A, Ram Prabhu T, Babu US, et al. The effect of heat treatment on the mechanical and tribological properties of dual size SiC reinforced A357 matrix composites. J Mater Res Technol. 2020;9(3):6434–6452.
  • Hassan HA, Hellier AK, Crosky AG, et al. Fracture toughness of cast and extruded Al6061/15% Al2O3p metal matrix composites. Aust J Mech Eng. 2018;1–9. DOI:10.1080/14484846.2018.1463628
  • Praveen S, Sumanth Y, Darshan N, et al. Effect of solutionizing and ageing on mechanical properties of AL2024 reinforced alumina particulate. J Mater Metall Eng. 2018;8(3):8–12.
  • Sv A. Multi-objective optimisation of dry sliding wear control parameters for stir casted AA7075-TiO2 composites using Taguchi-Grey relational approach. Aust J Mech Eng. 2020;1–10. DOI:10.1080/14484846.2020.1815997
  • Kumar GV, Panigrahy PP, Nithika S, et al. Assessment of mechanical and tribological characteristics of Silicon Nitride reinforced aluminum metal matrix composites. Compos Part B Eng. 2019;175:107138.
  • Rao PR, Mohan CB. Study on mechanical performance of silicon nitride reinforced aluminium metal matrix composites. Mater Today Proc. 2020. DOI:10.1016/j.matpr.2020.03.495
  • Mullah AK, Avinash L, Kabadi VR. Study of mechanical and tribological properties of CSAp reinforced LM25 MMC. J Mater Metall Eng. 2018;8(2):28–32.
  • Sharma VK, Singh RC, Chaudhary R. Effect of flyash particles with aluminium melt on the wear of aluminium metal matrix composites. Eng Sci Technol Int J. 2017;20(4):1318–1323.
  • Gururaja S, Ramulu M, Pedersen W. Machining of MMCs: a review. Mach Sci Technol. 2013;17(1):41–73.
  • Lalmuan SK, Das S, Chandrasekaran M, et al. Machining investigation on hybrid metal matrix composites-a review. Mater Today Proc. 2017;4(8):8167–8175.
  • Reddy BR, Srinivas C. Fabrication and characterization of silicon carbide and fly ash reinforced aluminium metal matrix hybrid composites. Mater Today Proc. 2018;5(2):8374–8381.
  • Ciftci I, Turker M, Seker U. CBN cutting tool wear during machining of particulate reinforced MMCs. Wear. 2004;257(9–10):1041–1046.
  • Seeman M, Ganesan G, Karthikeyan R, et al. Study on tool wear and surface roughness in machining of particulate aluminum metal matrix composite-response surface methodology approach. Int J Adv Manuf Technol. 2010;48(5–8):613–624.
  • Elangovan R, Ravikumar MM. Performance of al-fly ash metal matrix composites. ARPN J Eng Appl Sci. 2015;10(4):2080–2089.
  • Gupta MK, Rakesh PK. Application of industrial waste in metal matrix composite. J Polym Compos. 2019;4(3):27–34.
  • Kumar H, Prasad R, Kumar P, et al. Mechanical and tribological characterization of industrial wastes reinforced aluminum alloy composites fabricated via friction stir processing. J Alloys Compd. 2020. DOI:10.1016/j.jallcom.2020.154832
  • Rohatgi PK, Weiss D, Gupta N. Applications of fly ash in synthesizing low-cost MMCs for automotive and other applications. Jom. 2006;58(11):71–76.
  • Athira G, Bahurudeen A, Sahu PK, et al. Effective utilization of sugar industry waste in Indian construction sector: a geospatial approach. J Mater Cycles Waste Manage. 2020;1–13. DOI:10.1007/s10163-019-00963-w
  • Vu DH, Bui HB, Kalantar B, et al. Composition and morphology characteristics of magnetic fractions of coal fly ash wastes processed in high-temperature exposure in thermal power plants. Appl Sci. 2019;9(9):1964.
  • Koli DK, Agnihotri G, Purohit R. Advanced aluminium matrix composites: the critical need of automotive and aerospace engineering fields. Mater Today Proc. 2015;2(4–5):3032–3041.
  • Macke A, Schultz BF, Rohatgi P. Metal matrix composites. Adv Mater Processes. 2012;170(3):19–23.
  • Mohammed Razzaq A, Majid DL, Ishak MR, et al. Effect of fly ash addition on the physical and mechanical properties of AA6063 alloy reinforcement. Metals. 2017;7(11):477.
  • Rallabandi SR, Rao GS. Assessment of tribological performance of Al-coconut shell ash particulate—MMCs using grey-fuzzy approach. J Inst Eng India. 2019;100(1):13–22.
  • Selvam JDR, Smart DR, Dinaharan I. Microstructure and some mechanical properties of fly ash particulate reinforced AA6061 aluminum alloy composites prepared by compocasting. Mater Des. 2013;49:28–34.
  • Selvam JDR, Smart DR, Dinaharan I. Influence of fly ash particles on dry sliding wear behaviour of AA6061 aluminium alloy. Kovove Mater. 2016;54(03):175–183.
  • Das D, Samal C, Chaubey AK, et al. Influence of thermal treatment and reinforcement content on properties of aluminium matrix composites: a Case Study. Mater Today Proc. 2019a;18:3262–3267.
  • Das D, Roy DK, Satpathy MP, et al. Compressive, impact and flexural behaviour of Al based metal matrix composites. Mater Today Proc. 2019b;18:3080–3086.
  • Rajesh AM, Kaleemulla MK, Doddamani S. Effect of heat treatment on wear behavior of hybrid aluminum metal matrix composites. Tribol Ind. 2019;41(3):344–354.
  • Kolker A, Scott C, Hower JC, et al. Distribution of rare earth elements in coal combustion fly ash, determined by SHRIMP-RG ion microprobe. Int J Coal Geol. 2017;184:1–10.
  • Boopathi MM, Arulshri KP, Iyandurai N. Evaluation of mechanical properties of aluminium alloy 2024 reinforced with silicon carbide and fly ash hybrid metal matrix composites. Am J Appl Sci. 2013;10(3):219.
  • Hashim J, Looney L, Hashim MSJ. Particle distribution in cast metal matrix composites - part I. J Mater Process Technol. 2002a;123(2):251–257.
  • Hashim J, Looney L, Hashim MSJ. Particle distribution in cast metal matrix composites - part II. J Mater Process Technol. 2002b;123(2):258–263.
  • Balasivanandha Prabu S, Karunamoorthy L, Kathiresan S, et al. Influence of Stirring speed and stirring time on distribution of particles in cast metal matrix composites. J Mater Process Technol. 2006;171(2):268–273.
  • Canute X, Majumder M. Mechanical and tribological behaviour of stir cast aluminium/boron carbide/fly ash composites. J Eng Sci Technol. 2018;13(3):755–777.
  • Viswanatha BM, Prasanna Kumar M, Basavarajappa S, et al. Mechanical property evaluation of A356/SiCp/Gr metal matrix composites. J Eng Sci Technol. 2013;8(6):754–763.
  • Anilkumar HC, Hebbar HS, Ravishankar KS. Mechanical properties of fly ash reinforced aluminium alloy (Al6061) composites. Int J Mech Mater Eng. 2011;6(1):41–45.
  • Bharathi V, Ramachandra M, Srinivas S. Influence of fly ash content in aluminium matrix composite produced by stir-squeeze casting on the scratching abrasion resistance, hardness and density levels. Mater Today Proc. 2017;4(8):7397–7405.
  • Mohankumar S, Aravind R, SelvaKumar G, et al. Experimental investigation on the tribological -mechanical properties of B4C and fly ash reinforced Al 359 composites. Mater Today Proc. 2020;21:748–754.
  • Ramasamy D, Subramanian MK, Kaliyannan GV. Mechanical and tribological behavior of SiC and fly ash reinforced Al 7075 composites compared to SAE 65 bronze. Mater Testing. 2018;60(12):1225–1231.
  • Uyyuru RK, Surappa MK, Brusethaug S. Tribological behavior of Al–Si–SiCp composites/automobile brake pad system under dry sliding conditions. Tribol Int. 2007;40(2):365–373.
  • Mohan Kumar S, Deivasigamani R. Study on wear and friction characteristics of brake rotor made of Al 359–B4C composites. Int J Chem Tech Res. 2014;6:1684–1686.
  • Shivamurthy RC, Surappa MK. Tribological characteristics of A356 Al alloy– siCP composite discs. Wear. 2011;271(9–10):1946–1950.
  • Dinaharan I, Akinlabi ET. Low cost metal matrix composites based on aluminum, magnesium and copper reinforced with fly ash prepared using friction stir processing. Compos Commun. 2018;9:22–26.
  • Dinaharan I, Nelson R, Vijay S, et al. Microstructure and wear characterization of aluminum matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing. Mater Charact. 2016;118:149–158.
  • Rao RN, Das S. Wear coefficient and reliability of sliding wear test procedure for high strength aluminium alloy and composite. Mater. Des. 2010;31(7):3227–3233.
  • Reddy TP, Kishore SJ, Theja PC, et al. Development and wear behavior investigation on aluminum-7075/B4C/fly ash metal matrix composites. Adv Compos Hybrid Mater. 2020;3(2):255–265.
  • Shanmughasundaram P, Subramanian R, Prabhu G. Some studies on aluminium – fly ash composites fabricated by two step stir casting method. Eur J Sci Res. 2011;63(2):204–218.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.