123
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A path analysis-based approach for parametric study of an electrochemical machining process

& ORCID Icon
Pages 2918-2940 | Accepted 15 Jun 2021, Published online: 28 Jun 2021

References

  • Rajurkar KP, Sundaram MM, Malshe AP. Review of electrochemical and electrodischarge machining. Procedia CIRP. 2013;6:13–26.
  • Bhattacharyya B. Electrochemical micromachining for nanofabrication, MEMS and nanotechnology. Oxford, MA; Elsevier. 2015.
  • Xu Z, Wang Y. Electrochemical machining of complex components of aero-engines: developments, trends, and technological advances. Chin J Aeronaut. 2019. DOI:10.1016/j.cja.2019.09.016
  • Jain NK, Jain VK. Optimization of electro-chemical machining process parameters using genetic algorithms. Mach Sci Technol. 2007;11(2):235–258.
  • Klocke F, Zeis M, Klink A. Technological and economical capabilities of manufacturing titanium- and nickel-based alloys via electrochemical machining (ECM). Key Eng Mater. 2012;504-506:1237–1242.
  • Li Z, Ji H, Liu H. Machining parameter optimization of aero-engine blade in electrochemical machining based on BP neural network. Adv Mater Res. 2010;121-122:893–899.
  • Chavoshi SZ. Analysis and predictive modeling of performance parameters in electrochemical drilling process. Int J Adv Manuf Technol. 2011;53(9–12):1081–1101.
  • Nayak KC. Taguchi integrated least square support vector machine an alternative to artificial neural network analysis of electrochemical machining process. IOSR J Mech Civil Eng. 2012;1(3):1–10.
  • Mukherjee R, Chakraborty S. Selection of the optimal electrochemical machining process parameters using biogeography-based optimization algorithm. Int J Adv Manuf Technol 2013;64:781–791.
  • Senthilkumar C, Ganesan G, Karthikeyan R. Optimisation of ECM parameters using RSM and non-dominated sorting genetic algorithm (NSGA II). Int J Mach Mach Mater. 2013;14(1):77–90.
  • Dhobe SD, Doloi B, Bhattacharyya B. Optimisation of ECM process during machining of titanium using quality loss function. Int J Manuf Technol Manage. 2014;28(1/2/3):19–38.
  • Mohanty A, Talla G, Dewangan S, et al. Microstructural investigation and multi response optimisation using fuzzy-TOPSIS during the electrochemical machining of Inconel 825. Int J Precis Technol. 2015;5(3/4):201–216.
  • Rao SR, Padmanabhan G. Parametric optimization in electrochemical machining using utility based Taguchi method. J Eng Sci Technol. 2015;10:81–96.
  • Sathiyamoorthy V, Sekar T. Optimisation of processing parameters in ECM of AISI 202 using multi objective genetic algorithm. Int J Enterprise Network Manag. 2016;7(2):133–141.
  • Sohrabpoor H, Khanghah SP, Shahraki S, et al. Multi-objective optimization of electrochemical machining process. Int J Adv Manuf Technol. 2016;82(9–12):1683–1692.
  • Ayyappan S, Sivakumar K. Enhancing the performance of electrochemical machining of 20MnCr5 alloy steel and optimization of process parameters by PSO-DF optimizer. Int J Adv Manuf Technol. 2016;82(9–12):2053–2064.
  • Mehrvar A, Basti A, Jamali A Optimization of electrochemical machining process parameters: combining response surface methodology and differential evolution algorithm. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. Sage Publications. 2017; 231: 1114–1126
  • Manikandan N, Kumanan S, Sathiyanarayanan C. Multiple performance optimization of electrochemical drilling of Inconel 625 using Taguchi based grey relational analysis. Eng Sci Technol Int J. 2017;20(2):662–671.
  • Chakraborty S, Das PP, Kumar V. Application of grey-fuzzy logic technique for parametric optimization of non-traditional machining processes. Grey Systems Theory Appl. 2018;8(1):46–68.
  • Agarwal S, Dandge SS, Chakraborty S. Development of association rules to study the parametric influences in non-traditional machining processes. Sādhanā. 2019;44(11):230.
  • Panda SN, Bagal DK, Pattanaik AK, et al. Comparative evaluation for studying the parametric influences on quality of electrode using Taguchi method coupled with MOORA, DFA, and TOPSIS method for electrochemical machining. In: Parwani A, Ramkumar P, editors. Recent Advances in Mechanical Infrastructure. Lecture Notes in Intelligent Transportation and Infrastructure. Singapore: Springer; 2020;115-129.
  • Mehrvar A, Basti A, Jamali A Inverse modelling of electrochemical machining process using a novel combination of soft computing methods. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. Sage Publications. 2020; 10.1177/0954406220916495
  • Acherjee B, Maity D, Kuar AS. Optimization of correlated and conflicting responses of ECM process using flower pollination algorithm. Int J Appl Metaheuristic Comput. 2020;11(4):1–15.
  • Heshmatabad RR, Shabgard M. Machining of 304 stainless steel using electrochemical machining (ECM) process: response surface methodology approach. Int J Indust Engineer Product Res. 2020;31(3):397–407.
  • Stage FK, Carter HC, Nora A. Path analysis: an introduction and analysis of a decade of research. J Edu Res. 2004;98(1):5–13.
  • Streiner DL. Finding our way: an introduction to path analysis. Can J Psychiatry. 2005;50(2):115–122.
  • Huang X, Li B, Yu F, et al. Path analysis from physical activity to quality of life among dementia patients: a dual-path mediating model. J Adv Nurs. 2020;76(2):546–554.
  • Kline RB. Principles and Practice of Structural Equation Modeling. New York: The Guilford Press; 2011.
  • Hair JF, Black WC, Babin BJ, et al. Multivariate Data Analysis. New Jersey: Prentice-Hall; 2010.
  • Lei P-W WQ. Estimation in Structural Equation Modeling. In: Hoyle RH, editor. Handbook of structural equation modeling. New York: The Guilford Press; 2012:164-180.
  • Bollen KA, Curran PJ. Latent curve models: a structural equation perspective. New Jersey: John Wiley & Sons; 2006.
  • Bozdogan H. Model selection and Akaike’s Information Criterion (AIC): the general theory and its analytical extensions. Psychometrika. 1987;52(3):345–370.
  • Khan IA, Rani M, Deb RK, et al. Effect on material removal rate and surface finish in ECM process when machining stainless steel-316 with Cu electrode. Int J Recent Technol Engineer. 2019;8(4):2933–2941.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.