231
Views
8
CrossRef citations to date
0
Altmetric
Review Article

Improvement of process performance of powder mixed electrical discharge machining by optimisation -A Review

, , &
Pages 3074-3104 | Accepted 15 Jun 2021, Published online: 20 Jul 2021

References

  • Pandey PC, Shan HS. Modern machining process. New delhi: Tata McGraw-Hill Publishing Company Ltd; 1999. p. 84–113.
  • Singh NK, Pandey PM, Singh KK, et al. Steps towards green manufacturing through EDM process: a review. J Cogent Eng. 2016;3(1):1272662.
  • Luis CJ, Puertas I, Villa G. Material removal rate and electrode wear study on the EDM of silicon carbide. J Mater Process Technol. 2005;164–165:889–896.
  • Ho KH, Newman ST. State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf. 2003;43:1287–1300.
  • Singh NK, Singh Y, Sharma A, et al. An environmental-friendly electrical discharge machining using different sustainable techniques: a review. Adv Mater Process Technol. 2020. DOI:10.1080/2374068X.2020.1785210.
  • Kansal HK, Singh S, Kumar P. Technology and research developments in powder mixed electric discharge machining (PMEDM). J Mater Process Technol. 2007;184:32–41.
  • Abu Zeid OA. On the effect of electro-discharge machining parameters on the fatigue life of AISI D6 tool steel. J Mater Process Technol. 1997;68(1):27–32.
  • Singh NK, Singh Y, Sharma A. Experimental Investigation on electric discharge drilling of Titanium Alloy (Ti-6Al-4 V) with gas aided rotary tool. Sadhana. 2020;45:264.
  • Furutani K, Santo A, Takezawa H, et al. Accretion of titanium carbide by electrical discharge machining with powder suspended in working fluid. Precis Eng. 2001;25:138–144.
  • Malhotra P, Singh NK, Tyagi R, et al. Comparative study of rotary-EDM, gas assisted-EDM, and gas assisted powder mixed-EDM of the hybrid metal matrix composite. Adv Mater Process Technol. 2021;7(1):27–41.
  • Kansal HK, Singh S, Kumar P. Effect of silicon powder mixed EDM on machining rate of AISI D2 die steel. J Manuf Process. 2007;9(1):13–22.
  • Singh NK, Kumar S, Singh Y, et al. Predictive analysis of surface roughness in argon-assisted EDM using semi empirical and ANN techniques. SN Appl Sci. 2019;1:995.
  • Kim H, Ahn B A new evolutionary algorithm based on sheep flocks heredity model. In: Proceedings of IEEE Conference on Communications, Computers and Signal Processing; 2001. p. 514–517.
  • Puri AB, Bhattacharya B. An analysis and optimisation of the geometrical inaccuracy due to wire lag phenomenon in WEDM. Int J Mach Tools Manuf. 2002;43(2):151–159.
  • Huang JT, Liao YS. Optimization of machining parameters of wire-EDM based on grey relationaland statistical analyses. Int J Prod Res. 2003;41(8):1707–1720.
  • Tosun N, Cogun C, Tosun G. A study on kerf andmaterial removal rate in wire electrical discharge machining based on Taguchi method. J Mater Process Technol. 2004;152:316–322.
  • Kuriakose S, Shunmugam MS. Multi-objective optimization of wire-electro discharge machining process by non-dominated sorting genetic algorithm. J Mater Process Technol. 2005;170(1–2):133–141.
  • Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optimization. 2007;39(3):459–471.
  • Mahapatra SS, Patnaik A. Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi Method. J Adv Manuf Technol. 2007;34:911–925.
  • Rao RV, Pawar PJ. Modelling and optimization of process parameters of wire electrical discharge machining. Proc Inst Mech Eng B J Eng Manuf. 2009;223(11):1431–1440.
  • Pawar PJ, Rao RV, Davim JP. Multi objective optimization of grinding process parameters using particle swarm optimization algorithm. Mater Manuf Process. 2010;25:424–431.
  • Somashekhar KP, Ramachandran N, Mathew J. Optimization of material removal rate in micro-EDM using artificial neural network and genetic algorithms. Maters Manuf Process. 2010;25:467–475.
  • Samanta S, Chakraborty S. Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm. Eng Appl Artif Intell. 2011;24:946–957.
  • Majumder A. Process parameter optimization during EDM of AISI 316 LN stainless steel by using fuzzy based multi-objective PSO. J Mech Sci Technol J Mech Sci Technol. 2013;27(7):2143–2151.
  • Dewangan S, Gangopadhyay S, Biswas CK, et al. Study of surface integrity and dimensional accuracy in EDM using fuzzy TOPSIS and sensitivity analysis. Measurement. 2015;63:364–376.
  • Dewangan S, Gangopadhyay S, Biswas CK, et al. Multi-response optimization of surface integrity characteristics of EDM process using grey-fuzzy logic-based hybrid approach. Eng Sci Technol Int J. 2015;18(3):361–368.
  • Singh J, Sharma RK. Multi-objective optimization of green powder-mixed electrical discharge machining of tungsten carbide alloy. Proc IMechE Part C. 2017;232:2774–2786.
  • Ganesan H, Mohankumar G, Ganesan K, et al. Optimization of machining parameters in turning process using genetic algorithm and particle swarm optimization with experimental verification. Int J Eng Sci Technol. 2011;3:1091–1102.
  • Singh NK, Singh Y, Sharma A. Experimental investigation and statistical modeling of air-assisted EDM of Al–SiC composite with an improvised tool. J Braz Soc Mech Sci Eng. 2020;42:312.
  • Singh NK, Pandey PM, Singh KK. Experimental investigation and analysis of argon assisted perforated electrodes. Mater Manuf Process. 2016. DOI:10.1080/10426914.2016.1221079
  • Dervis K, Bahriye B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim. 2007;39:459–471.
  • Karaboga N. A new design method based on an artificial bee colony algorithm for digital IIR filters. J Franklin Inst. 2009;346(4):328–348.
  • Benala T, Jampala S, Villa S et al. (2009). A novel approach to image edge enhancement using Artificial Bee Colony optimization algorithm for hybridized smoothening filters. In: Nature & Biologically Inspired Computing. p. 1071–1076. NaBIC 2009. Coimbatore, India: World Congress.
  • Akay B, Karaboga D. Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Intell Manuf. 2012;23(4):1001–1014.
  • Karaboga D, Akay B. A comparative study of artificial bee colony algorithm. Appl Math Comput. 2009;214:108–132.
  • Rao RV, Pawar PJ, Davim JP. Optimization of process parameters of the mechanical type advanced machining processes using a simulated annealing algorithm. Int J Mach Tools Manuf. 2010;37(1–2):83–101.
  • Akay B, Karaboga D. Parameter tuning for the artificial bee colony algorithm. Lect Notes Comput Sci. 2009;608–619. DOI:10.1007/978-3-642-04441-0_53
  • Yang XS. Cuckoo search and firefly algorithm: theory and applications. Switzerland: Springer International Publishing; 2014. p. 1–26.
  • Yang XS. Nature-inspired algorithms and applied optimization. Switzerland: Springer International Publishing; 2018.
  • Yang XS. Nature-inspired meta heuristic. UK: Algorithmic Press; 2010.
  • Yang XS. Nature-inspired optimization algorithms. USA: Elsevier Inc.; 2014.
  • Yang XS. Artificial intelligence, evolutionary computing and meta heuristics. Berlin: Springer Verlag; 2013.
  • Kaveh A. Advances in meta heuristic algorithms for optimal design of structures. Switzerland: Springer International Publishing; 2014.
  • Reddy KP, Tharik BM, Kumar SS. Hole quality assurance by optimization of drilling parameters using cuckoo search algorithm. Int J Mech Prod Eng Res Dev. 2018;8(2):11–20.
  • Yadav VK, Kumar P, Dvivedi A. Effect of tool rotation in near-dry EDM process on machining characteristics of HSS. Mater Manuf Process. 2019;34(7):779–790.
  • Yang XS. Firefly algorithm. Nat Insp Meta-heuristic Algor. 2008;20:79–90.
  • Yang X. Firefly algorithm: recent advances and applications. Int J Swarm Intelligence. 2013;1(1):36-50.
  • Deng JL. Introduction to Grey system. J Grey Syst. 1989;1(1):1–24.
  • Singh PN, Raghukundan K, Pai BC.Optimization by Grey relational analysis of EDM parameters on machining Al–10%SiCP composites. J Mater ProcessiTchnol. 2004;155–156.
  • Tsai KM, Wang PJ. Comparisons of neural network models on material removal rate in electrical discharging machining. J Mater Processing Tchnol. 2001;117:111–124.
  • Singh NK, Upadhyay R, Singh Y, et al. Intelligent hybrid approaches for ensuring better prediction of gas-assisted EDM responses. SN Appl Sci. 2020;2:914.
  • Joshi SN, Pandey SS. Integrated process modeling of EDM using FEM and ANN. In: Proceedings of International Conference on Computer-Aided Engineering; IIT Madras; Chennai; 2007 Dec; p. 552–559.
  • Panda DK, Bhogi RK. ANN prediction of material removal rate in EDM. Mater Manuf Process. 2005;645–672. DOI:10.1081/AMP-200055033
  • Singh NK, Singh Y, Kumar S, et al. Comparative study of statistical and soft computing based predictive models for material removal rate and surface roughness during helium assisted EDM of D3 die steel. SN Appl Sci. 2019;1:529.
  • Wang K, Gelgele HL, Wang YI, et al. A hybrid intelligent method for modeling the EDM process. Int J MachTools Manuf. 2003;43:995–999.
  • Joshi SN, Pande SS Intelligent process modeling and optimization of EDM, competitive manufacturing. In: Proceedings of 2nd International & 23rd AIMTDR Conference; IIT Madras; Chennai, India; 2008. p. 475–480.
  • Tsai K-M, Wang P-J. Predictions on surface finish in electrical discharge machining based upon neural network models. Int J MachTools Manuf. 2001;41:1385–1403.
  • Saha P, Singha A, Pal SK, et al. Soft computing models based prediction of cutting speed and surface roughness in wire EDM of Tungsten carbide cobalt composite. J Adv Manuf Technol. 2008;39(1–2):74–84.
  • Prabhu S, Uma M, Vinayagam BK. Adaptive neuro-fuzzy interference system modelling of carbon nanotube-based electrical discharge machining process. J Braz Soc Mech Sci Eng. 2013;35(4):505–516.
  • Mandal D, Pal SK, Saha P. Modelling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II. J Mater ProcessiTchnol. 2007;186:1–3.
  • Esme U, Sagbas A, Kahraman F. Prediction of surface roughness in wire electrical discharge machining using design of experiments and neural networks. Iran J Sci Technol Transact B Eng. 2009;33:231–240.
  • Singh NK, Pandey PM, Singh KK. EDM with air assisted multi-hole rotating tool. Mater Manuf Process. 2016;31:1872–1878.
  • Kansal HK, Singh S, Kumar P. Parametric optimization of powder mixed electrical discharge machining by response surface methodology. J Mater ProcessiTchnol. 2005;169:427–436.
  • Desai AJF. Introduction to the finite element method: a numerical method for engineering analysis. Van Nostrand Reinhold; 1972.
  • Kohnke P. ANSYS, theory reference, SAS IP; 2004.
  • Mohanty CP, Mahapatra SS, Singh MR. A particle swarm approach for multi-objective optimization of electrical discharge machining process. J Intell Manuf. 2016;27(6):1171–1190.
  • Jeswani ML, Basu S. Electron microprobe study of deposition and diffusion of tool material in electrical discharge machining. Int J Prod Res. 1979;17(1):1–14.
  • Erden A, Bilgin S Role of impurities in electric discharge machining 21st International Machine Tool Design and Research Conference; Macmillan, London. 1980.
  • Jeswani ML. Effect of the addition of graphite powder to kerosene used as the dielectric fluid in electrical discharge machining. Wear. 1981;70(2):133–139.
  • Ming QY, He LY. Powder-suspension dielectric fluid for EDM. J Mater ProcessiTchnol. 1995;52(1):44–54.
  • Chow HM, Yan BH, Huang FY, et al. Study of added powder in kerosene for the micro-slit machining of titanium alloy using electro-discharge machining. J Mater ProcessiTchnol. 2000;101(1–3):95–103.
  • Uno Y, Okada A, Cetin S. Surface modification of EDMed surface with powder mixed fluid. In: 2nd International Conference on Design and Production of Dies and Molds; Kusadasi, Turkey, 2001.
  • Tzeng YF, Lee CY. Effects of powder characteristics on electro-discharge machining efficiency. J Adv Manuf Technol. 2001;17:586–592.
  • Zhao WS, Meng QG, Wang ZL. The application of research on powder mixed EDM in rough machining, J. Mater Process Technol. 2002;129:30–33.
  • Furutani K, Saneto A, Takezawa H, Mohri N, Miyake H. Accretion of titanium carbide by electrical discharge machining with powder suspended in working fluid. Precision Engg.  2001 25:138– 144.
  • Kozak J, Rozenek M, Dabrowski L. Study of electrical discharge machining using powder suspended working fluid. J Eng Manuf. 2003;217:1597–1602.
  • Singh S, Maheshwari S, Pandey PC, et al. Some investigations into the electric discharge machining of hardened tool steel using different electrode materials, J. Mater Process Technol. 2004;149:272–277.
  • Simao J, Lee HG, Aspinwall DK, et al. Work-piece surface modification using electrical discharge machining. Int J Mach Tools Manuf. 2003;43:121–128.
  • Klocke F, Lung D, Antonoglou G, et al. The effects of powder suspended dielectrics on the thermal influenced zone by electro-discharge machining with small discharge energies. J Mater Process Technol. 2004;149:191–197.
  • Pecas P, Henriques EA. Influence of silicon powder mixed dielectric on conventional electrical discharge machining. Int J MachTools Manuf. 2003;43:1465–1471.
  • Wu KL, Yan BH, Huang FY, et al. Improvement of surface finish on SKD steel using electro-discharge machining with aluminum and surfactant added dielectric. Int J MachTools Manuf. 2005;45:1195–1201.
  • Yih-Fong T, Fu-Chen C. Investigation into some surface characteristics of electrical discharge machined SKD-11 using powder-suspension dielectric oil. J Mater Process Technol. 2005;170(1–2):385–391.
  • Pecas P, Henriques E. Effect of powder concentration and dielectric flow in the surface morphology in electrical discharge machining with powder mixed dielectric (PMDEDM). J Adv Manuf Technol. 2008;37:120–1132.
  • Furutani K, Sato H, Suzuki M. Influence of electrical conditions on the performance of electrical discharge machining with powder suspended in working oil for titanium carbide deposition process. J Adv Manuf Technol. 2009;40(11):1093–1101.
  • Kumar A, Maheshwari S, Sharma C, et al. A study of multiobjective parametric optimization of silicon abrasive mixed electrical discharge machining of tool steel. Mater Manuf Process. 2010;25:1041–1047.
  • Kibria G, Sarkar BR, Pradhan BB, et al. Comparative study of different dielectrics for micro-EDM performance during micro-hole machining of Ti- 6Al-4V alloy. J Adv Manuf Technol. 2010;48:557–570.
  • Bhattacharya A, Batish A, Singh G, et al. Optimal parameter settings for rough and finish machining of die steels in powder-mixed EDM. Int J Adv Manuf Technol. 2012;61:537–548.
  • Padhee S, Nayak N, Panda SK, et al. Multi-objective parametric optimization of powder mixed electro-discharge machining using response surface methodology and non-dominated sorting genetic algorithm. Sadhana. 2012;37(2):223–240.
  • Singh G, Singh P, Tejpal G,Singh B. Effect of machining parameters on surface roughness of h13 steel in EDM process using powder mixed fluid. Int J Adv Engg Res Studies.2012. 2(I):148-150.
  • Syed KH, Palaniyandi K. Performance of electrical discharge machining using aluminum powder suspended distilled water. Turkish J Eng Env Sci. 2012;36:195–207.
  • Ojha K, Garg RK, Singh KK. Parametric optimization of PMEDM process using chromium powder mixed dielectric and triangular shape electrodes. J Mineral Mater Characteriz Eng. 2011;10(11):1087–1102.
  • Hua FQ, Caob FY, Songa BY, Houa PJ, Zhanga Y, Chena K, Weia JQ. Surface properties of SiCp/Al composite by powder-mixed EDM. Procedia CIRP 6 (2013) 101 – 106.
  • Goyal S, Singh RK. Parametric study of powder mixed EDM and optimization of MRR & surface roughness. Int J Scienti Engg Technol. 2014;3(1):56–62.
  • Mohanty S, Mishra A, Nanda BK, et al. Multi-objective parametric optimization of nano powder mixed electrical discharge machining of AlSiCp using response surface methodology and particle swarm optimization. Alexandria Eng J. 2018;57(2):609–619.
  • Prakash C, Singh S, Singh M, et al. Multi-objective optimization of MWCNT mixed electric discharge machining of Al–30 SiC MMC using particle swarm optimization. Futuristic Comp. 2018;145–164.ISBN: 978-981-13-2416-1.
  • Chiang C. Optimization of the WEDM process of particle-reinforced material with multiple performance characteristics using GRA. J Mater Process Technol. 2006;180(1):96–101.
  • Yilmaz O, Eyercioglu O, Gindy NNZ, et al. A user-friendly fuzzy-based system for the selection of EDM process parameters. J Mater Process Technol. 2006;172(3):363–371.
  • Lin Y, Cheng C, Su B, et al. Machining characteristics and optimization of machining parameters of SKH 57 high-speed steel using electrical discharge machining based on the Taguchi method. Maters Manuf Process. 2006;21(8):922–929.
  • Mandal D, Pal SK, Saha P, et al. Modelling of EDM using BPNN &muti-objective optimization using non-dominating sorting GA-II. J Mater Process Technol. 2007;186(1):154–162.
  • Tzeng C. Multi-objective optimization of high-speed EDM process using a Taguchi fuzzy-based approach. Mater Des. 2007;28(4):1159–1168.
  • Kanagarajn D, Karthikeyan R, Palanikumar K, et al. Influence of process parameters on electric discharge machining of WC/30% Co composites. Proc Inst Mech Eng Part B. 2008;222(7):807–815.
  • Soveja A, Cicală E, Grevey D, et al. Optimisation of TA6V alloy surface laser texturing using an experimental design approach. Opt Lasers Eng. 2008;46(9):671–678.
  • Newton TR, Melkote SN, Watkin TR, et al. Investigation of the effect of process parameters on the formation and characteristics of recast layer in wire-EDM of Inconel 718. Mat Sci Eng. 2009;513:208–215.
  • Yang SH, Srinivas J, Mohan S, et al. Optimization of electric discharge machining using simulated annealing. J Mater Process Technol. 2009;4471–4475. DOI:10.1016/j.jmatprotec.2008.10.053
  • Joshi S, Pandey S. Development of an intelligent process model for EDM. Int J Adv Manuf Technol. 2009;45(3–4):300–317.
  • Singh NK, Pandey PM, Singh KK. A semi-empirical model to predict material removal rate during air-assisted electrical discharge machining. J Braz Soc Mech Sci Eng. 2019;41(3):122.
  • Marafona JD, Araujo A. Influence of work piece hardness on EDM performance. Int J MachTools Manuf. 2009;49(9):744–748.
  • Rao G, Hanumantha Rao D. Hybrid modeling and optimization of hardnessof surface produced by electric discharge machining using artificial neural networks and genetic algorithm. J Eng Appl Sci. 2010;5(5):72–81.
  • Jung JH, Kwon WT. Optimization of EDM process for multiple performance characteristics using Taguchi method and Grey relational analysis. J Mech Sci Technol. 2010;24(5):1083–1090.
  • Reza MS, Hamdi M, Tomadi SH, et al. Optimization of control parameters for EWR in injection flushing type of EDM on stainless steel 304 workpiece. Int J Mech Mechatronics Eng. 2010;4(12):1387–1389.
  • Chen HC, Lin JC, Yang YK, et al. Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach. Expert Syst Appl. 2010;37(10):7147–7153.
  • Talón JLH, Ortega JC, Gómez CL, et al. Manufacture of a spur tooth gear in Ti–6Al–4V alloy by electrical discharge. Comput-Aided Des. 2010;42(3):221–230.
  • Pradhan MK, Biswas CK. Neuro-fuzzy and neural network-based prediction of various responses in electrical discharge machining of AISI D2 steel. Int J Adv Manuf Technol. 2010;50(5–8):591–610.
  • Reddy V, Reddy H, Kumar V. Selection of cutting velocity in wire EDM process using Taguchi-fuzzy approach. J Manuf Technol Res. 2010;2(1–2):109–121.
  • Sivapirakasam SP, Mathew J, Surianarayanan M. Multi-attribute decision making for green electrical discharge machining. Expert Syst Appl. 2011;38(7):8370–8374.
  • Joshi SN, Pandey SS. Intelligent process modeling and optimization of die-sinking electric discharge machining. Appl Soft Comput J. 2011;11(2):2743–2755.
  • Majhi P. Modeling of EDM using conventional regression analysis and GA. J Mat Engg Perform. 2011;20(7):1121–1127.
  • Singh NK, Upadhyay RK, Singh Y, et al. Electric discharge drilling with gas-assisted multi-hole slotted tool. Sci Iran. 2021;28(2):795–810.
  • Natarajan N, Arunachalam RM. Optimization of Micro-EDM with multiple performances characteristics using Taguchi method and Grey relation analysis. J Sci Ind Res. 2011;70:500–505.
  • Amini H, Soleymani Yazdi MR, Dehghan GH. Optimization of process parameters in wire electrical discharge machining of TiB2 nanocomposite ceramic. IMECHE, Part B: J Engg Manuf. 2011;225(12):2220–2227.
  • Tzeng CJ, Yang YK, Hsieh MH, et al. Optimization of wire electrical discharge machining of pure tungsten using neural network and response surface methodology. IMECHE, Part B: J Engg Manuf. 2011;225(6):841–852.
  • Jahan MP, Rahman M, San Wong Y. Study on the nano-powder mixed sinking and milling micro-EDM of WC-Co. Int J Adv Manuf Technol. 2011;53:167–180.
  • Pradhan MK. Determination of optimal parameters with multi response characteristics of EDM by response surface methodology, grey relational analysis and principal component analysis. Int J MachTools Manuf. 2012;26(1–4):56–80.
  • Bharti PS, Maheshwari SC. Multi-objective optimization of electric-discharge machining process using controlled elitist NSGA-II. J Mech Sci Technol. 2012;26(6):1875–1883.
  • Pandey S, Shrivastav PK, Dangi S, et al. Experimental modelling and optimisation of electrical arc machining of Al-B4C metal matrix composite. Aust J Mech Eng. 2019;1–11. DOI:10.1080/14484846.2019.1701395
  • Baraskar SS, Banwait SS, Laroiya SC., et al. Multiobjective optimization of electrical discharge machining process using a hybrid method. Maters Manuf Process. 2013;28(4):348–354.
  • Shahali H, Yazdi MRS, Mohammadi A, et al. Optimization of surface roughness and thickness of white layer in WEDM of din 1.4542 stainless steel using μ GA and SN ratio techniques. IMECHE Part B: JME. 2012;226(5):803–812.
  • Reza MS, Azmir MA, Tomadi SH, et al. Effects of polarity parameter on machining of tool steel work-piece using electrical discharge machining. In: National Conference in Mechanical Engineering Research and Postgraduate Students; Pahang, Malaysia; 2010. p. 621–626.
  • Atefi R, Javam N, Razmavar A, Teimoori F. The investigation of EDM parameters on electrode wear ratio. J Basic App Sci Res. 2012;4(10):1295–1299.
  • Manikandan R, Venkatesan R. Optimizing the machining parameters of micro-EDM for inconel 718. J Appl Sci. 2012;12(10):971–977.
  • Gostimirovic M, Rodic D, Kovac P, et al. Modeling of material removal rate in EDM using neural fuzzy systems. J Prod Engg. 2012;16(1):1–4.
  • Durairaj M, Sudharsun D, Swamynathan N. Analysis of process parameters in wire EDM with stainless steel using single objective Taguchi method and multi objective grey relational grade. Procedia Eng. 2013;64:868–877.
  • Prabhu S, Vinayagam B. Multi objective optimization of swcnt-based electrical discharge machining process using grey relational and fuzzy logic analysis. Int J Machin Machinability Maters. 2013;13(4):439–463.
  • Suganthi XH, Natarajan U, Sathiyamurthy CK. Prediction of quality responses in micro-EDM process using an adaptive neuro-fuzzy inference system (ANFIS) model. The Int J Adv Manuf Technol. 2013;68(1–4):339–347.
  • Singh NK, Singh Y. Experimental investigation and modeling of surface finish in argon-assisted electrical discharge machining using dimensional analysis. Arab J Sci Eng. 2019;44(6):5839–5850.
  • Chen D, Jhang J, Guo M. Application of Taguchi design method to optimize the electrical discharge machining. J Achieve Mater Manuf Eng. 2013;57:76–82.
  • Nikalje AM, Kumar A, Srinadh KS. Influence of parameters and optimization of EDM performance measures on MDN 300 steel using Taguchi method. Int J Adv Manuf Technol. 2013;69(1–4):41–49.
  • Zhang L, Jia Z, Liu W, et al. A two-stage servo feed controller of micro-EDM based on interval type-2 fuzzy logic. Int J Adv Manuf Technol. 2012;59(5–8):633–645.
  • Sivaprakasam. Modeling& analysis of μ-WEDM process of titanium alloy using RSM. Engg Sci Tech Int J. 2014;17(4):227–235.
  • Prasanna P, Sashank TV, Manikanta B, et al. Optimizing the process parameters of electrical discharge machining on AA7075-SiC alloys. Mater Today Proc. 2017;4(8):8517–8527.
  • Aharwal KR, Krishna CM. Optimization of material removal rate and surface roughness in EDM machining of metal matrix composite using genetic algorithm. Mater Today Proc. 2018;5(2):5391–5397.
  • Singh KJ. Optimization of process parameters of powder mixed EDM for high carbon high chromium alloy steel (D2 steel) through GRA approach. Grey Syst Theory Appl. 2018;8(4):388–398.
  • Pursehouse RC, Fleming PJ The multi-objective genetic algorithm applied to benchmark problems an analysis (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.