226
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effects of graphene nanoplatelets and boron carbide on microstructure and mechanical behaviour of aluminium alloy (Al6061) after friction stir welding

ORCID Icon, , , , , & show all
Pages 3148-3164 | Accepted 15 Jun 2021, Published online: 28 Jun 2021

References

  • Prabhu RSB, Shettigar AK, Patel Gc M, et al. Influence of process variables on joint attributes of friction stir welded aluminium matrix composite. Adv Mater Process Technol. 2020;1–10. DOI:10.1080/2374068X.2020.1860588
  • Kallee SW, Davenport J, NICHOLAS ED. Railway manufacturers implement friction stir welding. Weld J. 2002;81:47–50.
  • Thomas WM, Nicholas ED. Friction stir welding for the transportation industries. Mater Des. 1997;18(4–6):269–273.
  • Mishra RS, Ma Z. Friction stir welding and processing. Mater Sci Eng R Rep. 2005;50(1–2):1–78.
  • Wang D, Xiao BL, Wang QZ, et al. Friction stir welding of sicp/2009al composite plate. Mater Des. 2013;47:243–247.
  • Bhardwaj N, Narayanan RG, Dixit US, et al. Recent developments in friction stir welding and resulting industrial practices. Adv Mater Process Technol. 2019;5(3):461–496.
  • Rajendran C, Srinivasan K, Balasubramanian V, et al. Identifying the combination of friction stir welding parameters to attain maximum strength of Aa2014-T6 aluminum alloy joints. Adv Mater Process Technol. 2018;4(1):100–119.
  • Khan M, Syed WH, Akhtar S, et al. Friction stir processing (Fsp) of multiwall carbon nanotubes and boron carbide reinforced aluminum alloy (Al 5083) composites. In: Hovanski Y., Mishra R., Sato Y., Upadhyay P., Yan D. editors, Friction stir welding and processing X. The minerals, metals & materials series. Cham: Springer. https://doi.org/10.1007/978-3-030-05752-7_21.
  • Khan M, Ud-Din R, Wadood A, et al. Spark plasma sintering of graphene nanoplatelets reinforced aluminium 6061 alloy composites. Proc Light Metals. 2020;2020:301–311.
  • Khan M, Zulfaqar M, Ali F, et al. Microstructural and mechanical characterization of hybrid aluminum matrix composite containing boron carbide and Al-Cu-Fe quasicrystals. Met Mater Int. 2017;23(4):813–822.
  • Khan M, Zulfaqar M, Ali F, et al. Hybrid aluminium matrix composites containing boron carbide and quasicrystals: manufacturing and characterisation. Mater Sci Technol. 2017;33(16):1955–1963.
  • Singh T, Tiwari SK, Shukla DK. Novel method of nanoparticle addition for friction stir welding of aluminium alloy. Adv Mater Process Technol. 2020;1–13. DOI: 10.1080/2374068X.2020.1855397
  • Khan M, Rehman A, Aziz T, et al. Cold formability of friction stir processed aluminum composites containing carbon nanotubes and boron carbide particles. Mater Sci Eng A. 2017;696:552–557.
  • Karakizis P, Pantelis D, Fourlaris G, et al. Effect of Sic and Tic nanoparticle reinforcement on the microstructure, microhardness, and tensile performance of Aa6082-T6 friction stir welds. Int J Adv Manuf Technol. 2018;95(9–12):3823–3837.
  • Feng A, Xiao B, Ma Z. Effect of microstructural evolution on mechanical properties of friction stir welded Aa2009/Sicp composite. Compos Sci Technol. 2008;68(9):2141–2148.
  • Chen X-G, Da Silva M, Gougeon P, et al. Microstructure and mechanical properties of friction stir welded Aa6063–B4c metal matrix composites. Mater Sci Eng A. 2009;518(1–2):174–184.
  • Du Z, Tan M-J, Guo J-F, et al. Friction stir processing of Al–Cnt Composites. Proc Inst Mech Eng Part L: J Mater Des Appl. 2016;230:825–833.
  • Hosseini S, Ranjbar K, Dehmolaei R, et al. Fabrication of Al5083 surface composites reinforced by cnts and cerium oxide nano particles via friction stir processing. J Alloys Compd. 2015;622:725–733.
  • Khan M, Rehman A, Aziz T, et al. Effect of inter-cavity spacing in friction stir processed Al 5083 composites containing carbon nanotubes and boron carbide particles. J Mater Process Technol. 2018;253:72–85.
  • Jeon C-H, Jeong Y-H, Seo -J-J, et al. Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing. Int J Precis Eng Manuf. 2014;15(6):1235–1239.
  • Bahrami M, Givi MKB, Dehghani K, et al. On the role of pin geometry in microstructure and mechanical properties of Aa7075/Sic nano-composite fabricated by friction stir welding technique. Mater Des. 2014;53:519–527.
  • Paidar M, Asgari A, Ojo OO, et al. Mechanical properties and wear behavior of Aa5182/Wc nanocomposite fabricated by friction stir welding at different tool traverse speeds. J Mater Eng Perform. 2018;27(4):1714–1724.
  • Dragatogiannis D, Koumoulos E, Kartsonakis I, et al. Dissimilar friction stir welding between 5083 and 6082 Al alloys reinforced with tic nanoparticles. Mater Manuf Processes. 2016;31(16):2101–2114.
  • Khan M, Ud Din R, Wadood A, et al. Effect of graphene nanoplatelets on the physical and mechanical properties of Al6061 in fabricated and T6 thermal conditions. J Alloys Compd. 2019;790:1076–1091.
  • Şenel MC, Gürbüz M, Koç E. Fabrication and characterization of synergistic Al-Sic-Gnps hybrid composites. Compos Part B Eng. 2018;154:1–9.
  • Liu ZY, Xiao BL, Wang WG, et al. Analysis of carbon nanotube shortening and composite strengthening in carbon nanotube/aluminum composites fabricated by multi-pass friction stir processing. Carbon. 2014;69:264–274.
  • Golezani AS, Barenji RV, Heidarzadeh A, et al. Elucidating of tool rotational speed in friction stir welding of 7020-T6 aluminum alloy. Int J Adv Manuf Technol. 2015;81(5–8):1155–1164.
  • Khan M, Ahmad S, Zaidi S, et al. Titanium carbide coating on graphene nanoplatelets. J Mater Res Technol. 2020;9(3):3075–3083.
  • Khodabakhshi F, Arab SM, Švec P, et al. Fabrication of a new Al-Mg/graphene nanocomposite by multi-pass friction-stir processing: dispersion, microstructure, stability, and strengthening. Mater Charact. 2017;132:92–107.
  • Liu X, Wu C, Padhy GK. Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding. Scr Mater. 2015;102:95–98.
  • Murr L, Flores R, Flores O, et al. Friction-stir welding: microstructural characterization. Mater Res Innovations. 1998;1(4):211–223.
  • Weertman J. Hall-petch strengthening in nanocrystalline metals. Mater Sci Eng A. 1993;166(1–2):161–167.
  • Maurya R, Kumar B, Ariharan S, et al. Effect of carbonaceous reinforcements on the mechanical and tribological properties of friction stir processed Al6061 alloy. Mater Des. 2016;98:155–166.
  • Sharma A, Sharma VM, Sahoo B, et al. Effect of multiple micro channel reinforcement filling strategy on Al6061-graphene nanocomposite fabricated through friction stir processing. J Manuf Processes. 2019;37:53–70.
  • Farshidi MH, Kazeminezhad M, Miyamoto H. Severe plastic deformation of 6061 aluminum alloy tube with pre and post heat treatments. Mater Sci Eng A. 2013;563:60–67.
  • Liu X, Li J, Liu E, et al. Synergistic strengthening effect of alumina anchored graphene nanosheets hybrid structure in aluminum matrix composites. Fuller Nanotub Car Nanostruct. 2019;27(8):640-649.
  • Khan M, Ud-Din R, Syed WH, et al. Spark plasma sintering of boron carbide reinforced aluminum alloy (Al6061) matrix composites.” Proc. 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 2019, pp. 35–41, National Centre for Physics, Qauid-i-Azam University, Islamabad, Pakistan. https://www.ncp.edu.pk/
  • Shahraki S, Khorasani S, Behnagh RA, et al. Producing of Aa5083/Zro2 nanocomposite by friction stir processing (Fsp). Metall Mat Trans B. 2013;44(6):1546–1553.
  • Montazerian M, Movahedi M, Jondi M. Effect of graphene and process parameters on mechanical performance and electrical resistance of aluminum to copper friction stir joint. Mater Res Express. 2019;6(4):046561.
  • Khan M, Ud-Din R, Wadood A, et al. Physical and mechanical properties of graphene nanoplatelet-reinforced Al6061-T6 composites processed by spark plasma sintering. JOM. 2020;72(6):2295–2304.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.