130
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Influence of surface modifications of Castor oil fibre on mechanical properties of fibre reinforced Epoxy composites

& ORCID Icon
Pages 724-762 | Accepted 07 Jul 2021, Published online: 04 Aug 2021

References

  • Ahmed Fotouh, Wolodko JD, Lipsett MG. Fatigue of natural fiber thermoplastic composites. Compos Part B. 2014;62:175–182.
  • Yousif BF, Shalwan A, Chin CW, et al. Flexural properties of treated and untreated kenaf/epoxy composites. Mater Des. 2012;40:378–385.
  • Jayaraman K. Manufacturing sisal-polypropylene composites with minimum fibre degradation. Compos Sci Technol. 2003;63(3–4):367–374.
  • ProsenjitSaha S, Manna S, Chowdhury R, et al. Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment. Bioresour Technol. 2010;101(9):3182–3187.
  • Mahjoub R, Yatim JM, Mohd Sam AR, et al. Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Constr Build Mater. 2014;55:103–113.
  • Jahan E, Akter M, Mahbub H. Effect of fibre ratio and chemical treatment on the properties of pineapple leaf and betel nut husk fibre-reinforced hybrid polypropylene composites. Adv Mater Process Technol. 2020;(3). DOI:10.1080/2374068X.2020.1732057.
  • Haque MM, Hasan M. 2018. Influence of fiber surface treatment on physico-mechanical properties of betel nut and glass fiber reinforced hybrid polyethylene composites. Adv Mater Process Technol. 20183. DOI: 10.1080/2374068X.2018.1465322.
  • Zhu J, Zhu H, Immonen K, et al. Improving mechanical properties of novel flax/tannin composites through different chemical treatments. Ind Crops Prod. 2015;67:346–354.
  • Orue A, Jauregi A, Unsuain U, et al. The effect of alkaline and silane treatments on mechanical properties and breakage of sisal fibers and poly (lactic acid)/sisal fiber composites. Compos Part A. 2016;84:186–195.
  • Saha P, Manna S, Chowdhury SR, et al. Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment. Bioresour Technol. 2010;101(9):3182–3187 .
  • Lu T, Jiang M, Jiang Z, et al. Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Compos Part B. 2013;51:28–34.
  • Mwaikambo LY, Ansell MP. Hemp fibre reinforced cashew nut shell liquid composites. Compos Sci Technol. 2003;63(9):1297–1305.
  • Goriparthi BK, Suman KNS, Rao NM. Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos Part A. 2012;43(2012):1800–1808.
  • Aziz SH, Ansell MP. The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: part 2 – cashew nut shell liquid matrix. Compos Sci Technol. 2004;64(9):1231–1238.
  • Mir SS, NaziaNafsin, Hasan M, et al. Improvement of physico-mechanical properties of coir-polypropylene biocomposites by fiber chemical treatment. Mater Des. 2013;52:251–257.
  • Mahesh V, Mahesh V, Harursampath D. Influence of alkali treatment on physio-mechanical properties of jute–epoxy composite. Adv Mater Process Technol. 2021. DOI:10.1080/2374068X.2021.1934643
  • Khan MA, Hassan MM, Taslima R, et al. Role of pretreatment with potassium permanganate and urea on mechanical and degradable properties of photo cured coir fiber with 1,6 hexanediol diacrylate. J Appl Polym Sci. 2006;100:4361–4368.
  • Sreekumar PA, Thomas SP, Saiter JM, et al. Effect of fiber surface modification on the mechanical and water absorption characteristics of sisal/polyester composites fabricated by resin transfer molding. Compos Part A. 2009;40(11):1777–1784.
  • Paul SA, Kuruvilla Joseph GD, Gem Mathew LA, et al. Influence of polarity parameters on the mechanical properties of composites from polypropylene fiber and short banana fiber. Compos Part A. 2010;41(10):1380–1387.
  • Zhang Z, Friedrich K. Artificial neural networks applied to polymer composites: a review. Composites Science and Technology. 2003;63(14):2029–2044.
  • El Kadi H. Modeling the mechanical behavior of fiber-reinforced polymeric composite materials using artificial neural networks — a review. Composite Structures. 2006;73:1–23.
  • Jia-li T, Yi-jun L, Fang-sheng W, Neural network for prediction of composite mechanical properties based on niche geneticalgorithm, international conference on networking and digital society, 2010, 2–5.
  • Zhang Z, Friedrich K, Velten K. Prediction on tribological properties of short fibre composites using artificial neural networks. Wear. 2002;252(7–8):668–675.
  • Keerthi Gowda BS, Easwara Prasad GL, Velmurgan R. Prediction of tensile properties of untreated coir reinforced polyester matrix composites by ANN. 2014;9(1):33–38. International Journal of Materials Science.
  • Egala R, GangiSetti S. Experimental investigation on Tensile property of Castor oil plant fiber to make polymer reinforced composites. Mater Today Proc. 2017;4:8633–8637.
  • Vinayaka DL, Guna V, Madhavi D, et al. Castor oil plant residues as a source for natural cellulose fiberspotentially exploitable in polymer composites. Ind Crops Prod. 2017;100:126–131.
  • Arthanarieswaran VP, Kumaravel A, Kathirselvam: M. Evaluation of mechanical properties of banana and sisal fiber reinforced epoxy composites: influence of glass fiber hybridization. Mater Des. 2014;64:194–202.
  • Bezazi A, Belaadi A, Bourchak M, et al. Novel extraction techniques, chemical and mechanical characterisation of Agave americana L. natural fibres. Compos. Part B: Eng. 2014;66: 194–203.
  • Komal UK, Verma V, Ashwani T, et al. Effect of chemical treatment on thermal, mechanical and degradation behavior of banana fiber reinforced polymer composites. J Nat Fibers. 2018. DOI:10.1080/15440478.2018.1550461
  • ASTM D638-89, Standard test method for tensile properties of plastics. ASTM International; 1989-1–29.
  • Azhar SW, Xu F, Zhang Y, Qiu Y. Fabrication and mechanical properties of flaxseed fiber bundle-reinforced polybutylene succinate composites. Journal of Industrial Textiles. 2020;50(1):98-113.
  • Rahman M, Das S, Hasan M. Mechanical properties of chemically treated banana and pineapple leaf fiber reinforced hybrid polypropylene composites. Adv Mater Process Technol. 2018;2018(4). DOI:10.1080/2374068X.2018.1468972.
  • ASTMD2568,Standardtestmethodforimpactresistancesofplasticsandelectricalinsulatingmaterials.ASTMInternational;1988; 3–25.
  • Fiore V, Scalici T, Nicoletti F, et al. A new eco-friendly chemical treatment of natural fibres: effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites. Compos Part B. 2016;85:150–160.
  • Paiva MC, Ammar L, Ar C, et al. Alfa fibers: mechanical, morphological and interfacial characterization. Compos Sci Technol. 2007;67(6):1132–1138.
  • Olsson AM, Salmen L. The association of water to cellulose and hemicellulose in paper examined by FTIR spectroscopy. Carbohydr Res. 2004;339(4):813–818.
  • De Rosa IM, Kenny JM, Puglia D, et al. Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos Sci Technol. 2010;70(1):116–122.
  • Towo AN, Ansell MP. Fatigue evaluation and dynamic mechanical thermal analysis of sisal fibre–thermosetting resin composites. Compos Sci Technol. 2008;68(3–4):925–932.
  • Shinoj S, Rangaraju V, Panigrahi S, et al. Oil palm fiber (OPF) and its composites: a review. Ind Crops Prod. 2011;33(1):7–22.
  • Arthanarieswaran VP, Kumaravel A, Kathirselvam M, et al. Mechanical and thermal properties of Acacia leucophloea fiber/epoxy composites: influence of fiber loading and alkali treatment. Int J Polym Anal Charact. 2016;2016 (7). DOI:10.1080/1023666X.2016.1183279.
  • Sawpan MA, Pickering KL, Alan F. Flexural properties of hemp fibre reinforced polylactide and unsaturated polyester composites. Compos Part A. 2012;43(3):519–526.
  • Dong Y, ArvinderGhataura H, Takagi HJ, et al. Polylactic acid (PLA) biocomposites reinforced with coir fibres: evaluation of mechanical performance and multifunctional properties. Compos Part A. 2014;63:76–84.
  • Huda MS, Drzal LT, Mohanty AK, et al. Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos Sci Technol. 2008;68(2):424–432.
  • XiuliangHou F, Sun DY, HelanXu, et al. Preparation of lightweight polypropylene composites reinforced bycotton stalk fibers from combined steam flash-explosion and alkalinetreatment. J Clean Prod. 2014;83:454–462.
  • Nijandhan K, Muralikannan R, Venkatachalam S. Castor oil fiber as potential reinforcement for lightweight polymer composites. Mater Res Express. 2018;5(9):095307.
  • Nam T, Ogihara S, Tung NH, et al. Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Compos Part B. 2011; 42(2011):1648–1656.
  • Egala R, Jagadeesh GV, Setti SG. Experimental investigation and prediction of tribological behavior of unidirectional short castor oil fiber reinforced epoxy composites. Friction. 2020. DOI:10.1007/s40544-019-0332-0
  • Kurkova´ V. Kolmogrov’s theorem is relevant. Neural Comput. 1991;3(4):617–622.
  • Swingler K. Applying neural networks: a practical guide. San Francisco: Morgan Kaufman Publishers, Inc; 1996.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.