298
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Surface moderation and composite fabrication of die-cast magnesium alloys via friction stir processing: a review

, ORCID Icon &
Pages 3635-3655 | Accepted 18 Aug 2021, Published online: 30 Aug 2021

References

  • Callister WD Jr., Rethwisch DR. Callister’s materials science and engineering. 10th Edition. Wiley. 2019. Global Edition. https://www.wiley.com/en-in/Callister%27s+Materials+Science+and+Engineering%2C+10th+Edition%2C+Global+Edition-p-9781119453918
  • King JF. Magnesium: commodity or exotic? Internet. 2013 [cited 2021 Jul 30];23:1–14. Available from. https://www.tandfonline.com/doi/abs/10.1179/174328407X154374
  • Gupta M, Sharon NML. Magnesium, magnesium alloys, and magnesium composites. [Internet]. Magnesium Magnes Alloy Magnes Compos. John Wiley and Sons; 2010 [cited 2021 Aug 11]. Available from https://onlinelibrary.wiley.com/doi/book/10.1002/9780470905098
  • Avedesian MM, Baker H. ASM international. handbook committee. magnesium and magnesium alloys, editor ed. Avedesian M, Baker H: ASM International, 1999 https://www.asminternational.org/handbooks/-/journal_content/56/10192/06770G/PUBLICATION.
  • Polmear IJ. Magnesium alloys and applications. Mater Sci Technol Internet]. 2013 [cited 2021 Jul 30];10:1–16. Available from ;(1): https://www.tandfonline.com/doi/abs/10.1179/mst.1994.10.1.1
  • Russell AM, Lee KL. Structure-property relations in nonferrous metals [Internet]. In: Alan M, Russell KLL, editors. Struct. relations nonferrous met. John Wiley and Sons; 2005. cited 2021 Aug 11. Available from: https://onlinelibrary.wiley.com/doi/book/10.1002/0471708542
  • Polmear I, St. John D, Nie J-F, et al. The Light Metals - Light Alloys [Internet]. Butterworth-Heinemann: Elsevier Ltd.; 2017. cited 2021 Aug 11. Available from https://www.sciencedirect.com/science/article/pii/B9780080994314000014
  • Mordike BL, Ebert T. Magnesium: properties — applications — potential. Mater Sci Eng A. 2001;302(1):37–45.
  • Kainer K. Magnesium: proceedings of the 7th international conference on magnesium alloys and their applications. Magnes Proc 7th Int Conf Magnes Alloy their Appl [Internet]. Weinheim: Wiley-VCH; 2007 [cited 2021 Aug 11]. p. 512–516. Available from: https://books.google.co.il/books?id=WIGLNjp0MKMC.
  • He SM, Zeng XQ, Peng LM, et al. Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0.5Zr alloy. J Alloys Compd. 2007;427(1–2):316–323.
  • Yang Z, Li JP, Guo YC, et al. Precipitation process and effect on mechanical properties of Mg–9Gd–3Y–0.6Zn–0.5Zr alloy. Mater Sci Eng A. 2007;454–455:274–280.
  • Luo AA, Sachdev AK. Development of a new wrought magnesium-aluminum-manganese alloy AM30. Metall Mater Trans A 2007 386 [Internet]. 2007 [cited 2021 Jul 30];38:1184–1192. Available from;(6): https://link.springer.com/article/10.1007/s11661-007-9129-2
  • González-Martínez R, Göken J, Letzig D, et al. Influence of heat treatment on damping behaviour of the magnesium wrought alloy AZ61. Acta Metall Sin. 2007;20(4):235–240. (English Lett.
  • Skubisz P, Sińczak J, Bednarek S. Forgeability of Mg–Al–Zn magnesium alloys in hot and warm closed die forging. J Mater Process Technol. 2006;177(1–3):210–213.
  • WESTENGEN H. Magnesium alloys for structural applications; recent advances. Le J Phys IV [Internet]. 1993 [cited 2021 Jul 30];03:C7–491. Available from
  • Kainer KU. Magnesium Alloys and their Applications [Internet]. Prof. Dr.-Ing. K. U. Kainer, editor. Magnes. Alloy. their Appl. Wiley; 2000 [cited 2021 Aug 11]. Available from: https://onlinelibrary.wiley.com/doi/book/10.1002/3527607552.
  • Abe E, Kawamura Y, Hayashi K, et al. Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-contrast STEM. Acta Mater. 2002;50(15):3845–3857.
  • Inoue A, Kawamura Y, Matsushita M, et al. Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg–Zn–Y system. J Mater Res. 2001 167 [Internet]. 2001 [cited 2021 Jul 30];16:1894–1900. Available from; (7): https://link.springer.com/article/10.1557/JMR.2001.0260
  • Hambleton R, Jones H, Rainforth WM. Effect of alloy composition and reinforcement with silicon carbide on the microstructure and mechanical properties of three silicide dispersion strengthened aluminium alloys. Mater Sci Eng A. 2001;304–306:524–528.
  • Bajakke PA, Malik VR, Mugali P, et al. Microwave Processing of Engineering Materials. In: Kaushik Kumar B, JPD SB, editors. Coatings [Internet]: Springer, Cham; 2021 cited 2021 Aug 12. p. 31–55. Available from: https://link.springer.com/chapter/10.1007/978-3-030-62163-6_2
  • StJohn DH, Easton MA, Qian M, et al. Grain refinement of magnesium alloys: a review of recent research, theoretical developments, and their application. Metall Mater Trans A. 2012 447 [Internet]. 2012 [cited 2021 Jul 30];44:2935–2949. Available from; (7): https://link.springer.com/article/10.1007/s11661-012-1513-x
  • Chung DDL. 2010. Composite Materials [Internet]. London: Springer London. Available from: http://link.springer.com/10.1007/978-1-84882-831-5
  • MNH R, Malik V HML, et al. Effect of microstructure, mechanical and wear on Al-CNTs/graphene hybrid MMC’S. Adv Mater Process Technol. Internet]. 2021 [cited 2021 Aug 12]; Available from: https://www.tandfonline.com/doi/abs/10.1080/2374068X.2021.1927646
  • Bayoumi MR, Abdellatif AK. Effect of surface finish on fatigue strength. Eng Fract Mech. 1995;51(5):861–870.
  • Sunil BR, Reddy GPK, Patle H, et al. Magnesium based surface metal matrix composites by friction stir processing. J Magnes Alloy. 2016;4(1):52–61.
  • Singh RK, Gilbert DR, Fitz-Gerald J, et al. Surface composites: novel method to fabricate adherent interfaces.[Internet]. 2013 [cited 2021 Aug 3];13:389–392. Available from: https://www.tandfonline.com/doi/abs/10.1179/sur.1997.13.5.389.
  • Bajakke PA, Jambagi SC, Malik VR, et al. Friction stir processing: an emerging surface engineering technique. 2020;1–31. Available from: http://link.springer.com/10.1007/978-3-030-43232-4_1.
  • Liu SS, Wang XH, Zhang M, et al. Fabrication of CNTs–TiC–Ti2(Ni,Al)–Ni3Ti reinforced Ti-based composite coating by laser alloying processing. J Mater Res Technol. 2019;8(6):5930–5940.
  • Abioye TE, Farayibi PK, Kinnel P, et al. Functionally graded Ni-Ti microstructures synthesised in process by direct laser metal deposition. Int J Adv Manuf Technol. 2015 795 [Internet]. 2015 [cited 2021 Aug 3];79:843–850. Available from; (5–8): https://link.springer.com/article/10.1007/s00170-015-6878-8
  • Ayers JD, Tucker TR. Particulate-TiC-hardened steel surfaces by laser melt injection. Thin Solid Films. 1980;73(1):201–207.
  • Szymlek K. Laser beam welding of sheets of commercial pure titanium. Weld Int Internet]. 2012 [cited 2021 Aug 11];26:421–423. Available from;(6): https://www.tandfonline.com/doi/abs/10.1080/09507116.2011.581344
  • Riabkina-Fishman M, Rabkin E, Levin P, et al. Laser produced functionally graded tungsten carbide coatings on M2 high-speed tool steel. Mater Sci Eng A. 2001;302(1):106–114.
  • Tailor S, Mohanty RM, Sharma VK, et al. Nanostructured 2024Al–SiCp composite coatings. 2014 Internet]. [cited 2021 Aug 3];32:526–534. Available from https://www.tandfonline.com/doi/abs/10.1179/1743294414Y.0000000391
  • Mishra RS, Mahoney MW, McFadden SX, et al. High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scr Mater. 1999;42(2):163–168.
  • Malik VR, Bajakke PA, Jambagi SC, et al. Investigating mechanical and corrosion behavior of plain and reinforced AA1050 sheets fabricated by friction stir processing. JOM. 2020 7210 [Internet]. 2020 [cited 2021 Aug 3];72:3582–3593. Available from;(10): https://link.springer.com/article/10.1007/s11837-020-04323-0
  • Reddy GM, Prasad KS, Rao KS, et al. Friction surfacing of titanium alloy with aluminium metal matrix composite.[Internet]. 2013 [cited 2021 Aug 3];27:92–98. Available from: https://www.tandfonline.com/doi/abs/10.1179/174329409X451128.
  • Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R Rep. 2005;50(1–2):1–78.
  • Dilip JJS, Janaki Ram GD. Microstructures and properties of friction freeform fabricated borated stainless steel. J Mater Eng Perform 2013 2210 [Internet]. 2013 [cited 2021 Aug 3];22:3034–3042. Available from;(10): https://link.springer.com/article/10.1007/s11665-013-0605-0
  • Bajakke PA, Malik VR, Deshpande AS. Particulate metal matrix composites and their fabrication via friction stir processing – a review. Mater Manuf Process. Internet]. 2019;34:833–881. Available from;(8): https://www.tandfonline.com/doi/full/10.1080/10426914.2019.1605181
  • Bajakke PA, Malik VR,LA, et al. A novel ultrahigh conductive Al-Cu composite produced via microwave sintering and post-treated by friction stir process. Adv Mater Process Technol. Internet]. 2021 [cited 2021 Aug 12]; Available from https://www.tandfonline.com/doi/abs/10.1080/2374068X.2021.1945270
  • Prabhu S, Bajakke P, Malik V. A review on in-situ aluminum metal matrix composites manufactured via friction stir processing: meeting on-ground industrial applications. World J Eng. 2021;ahead-of-print(ahead–of–print). 10.1108/WJE-01-2021-0001
  • Albakri AN, Mansoor B, Nassar H, et al. Thermo-mechanical and metallurgical aspects in friction stir processing of AZ31 Mg alloy—A numerical and experimental investigation. J Mater Process Technol. 2013;213(2):279–290.
  • Khan NZ, Siddiquee AN, Khan ZA, et al. Investigations on tunneling and kissing bond defects in FSW joints for dissimilar aluminum alloys. J Alloys Compd. 2015;648:360–367.
  • Gangil N, Maheshwari S, Siddiquee AN. Influence of tool pin and shoulder geometries on microstructure of friction stir processed AA6063/SiC composites. Mech Ind. Internet]. 2018;19:211.Available from;(2): https://www.mechanics-industry.org/10.1051/meca/2018010
  • Kumar N, Mishra RS, Huskamp CS, et al. Microstructure and mechanical behavior of friction stir processed ultrafine grained Al–Mg–Sc alloy. Mater Sci Eng A. 2011;528(18):5883–5887.
  • Siddiquee AN, Pandey S. Experimental investigation on deformation and wear of WC tool during friction stir welding (FSW) of stainless steel. Int J Adv Manuf Technol 2014 731 [Internet]. 2014 [cited 2021 Aug 5];73:479–486. Available from;(1–4): https://link.springer.com/article/10.1007/s00170-014-5846-z
  • Malik V, Kailas SV. Understanding the effect of tool geometrical aspects on intensity of mixing and void formation in friction stir process. Proc Inst Mech Eng Part C J Mech Eng Sci. Internet]. 2020;095440622093841. Available from http://journals.sagepub.com/doi/10.1177/0954406220938410
  • Malik V, Kailas SV. Plasticine modeling of material mixing in friction stir welding. J Mater Process Technol. 2018;258.
  • Malik V, Sanjeev NK, Hebbar HS, et al. Investigations on the effect of various tool pin profiles in friction stir welding using finite element simulations. Procedia Eng. 2014;97:1060–1068.
  • Malik V, Sanjeev NK, Bajakke P. Review on modelling of friction stir welding using finite element approach and significance of formulations in simulation. Int J Manuf Res. 2020;15:181–198.
  • Malik V, Sanjeev NK, Hebbar HS, et al. Finite element simulation of exit hole filling for friction stir spot welding – a modified technique to apply practically. Procedia Eng. 2014;97:1265–1273.
  • Huang Y, Wang T, Guo W, et al. Microstructure and surface mechanical property of AZ31 Mg/SiCp surface composite fabricated by Direct Friction Stir Processing. Mater Des. 2014;59:274–278.
  • Arbegast WJ. A flow-partitioned deformation zone model for defect formation during friction stir welding. Scr Mater. 2008;58(5):372–376.
  • Suman C. Creep of diecast magnesium alloys AZ91D and AM60B. SAE Tech Pap. 1991.
  • AKYUZ B. A study on wear and machinability of AZ series (AZ01-AZ91) cast magnesium alloys. Met Mater. 2016;52:255–262.
  • Akyuz B. Influence of Al content on machinability of AZ series Mg alloys. Trans Nonferrous Met Soc China. 2013;23(8):2243–2249.
  • Candan S, Unal M, Koc E, et al. Effects of titanium addition on mechanical and corrosion behaviours of AZ91 magnesium alloy. J Alloys Compd. 2011;509(5):1958–1963.
  • Luo AA. Recent magnesium alloy development for automotive powertrain applications. Mater Sci Forum. Internet]. 2003 [cited 2021 Aug 5];419–422:57–66. Available from https://www.scientific.net/MSF.419-422.57
  • Cavaliere P, De Marco PP. Fatigue behaviour of friction stir processed AZ91 magnesium alloy produced by high pressure die casting. Mater Charact. 2007;58(3):226–232.
  • Wang W, Han P, Peng P, et al. Friction stir processing of magnesium alloys: a review. Acta Metall Sin. English Lett 2019 331 [Internet]. 2019 [cited 2021 Aug 5];33:43–57.Available from; (1): https://link.springer.com/article/10.1007/s40195-019-00971-7
  • Sabbaghian M, Mahmudi R. microstructural evolution and local mechanical properties of friction stir processed Mg-3Gd-1Zn cast alloy. 2016 255 [Internet]. 2016 [cited 2021 Aug 5];25:1856–1863. Available from J Mater Eng Perform; 5: https://link.springer.com/article/10.1007/s11665-016-2013-8
  • Ma ZY, Xiao BL, Yang J, et al. Friction stir processing: a novel approach for microstructure refinement of magnesium alloys. Mater Sci Forum. Internet]. 2010 [cited 2021 Aug 6];638-642:1191–1196. Available from https://www.scientific.net/MSF.638-642.1191
  • Wang W, Wang K, Guo Q, et al. Effect of friction stir processing on microstructure and mechanical properties of cast AZ31 magnesium alloy. Rare Met Mater Eng. 2012;41(9):1522–1526.
  • Feng AH, Ma ZY. Enhanced mechanical properties of Mg–Al–Zn cast alloy via friction stir processing. Scr Mater. 2007;56(5):397–400.
  • Ma ZY, Pilchak AL, Juhas MC, et al. Microstructural refinement and property enhancement of cast light alloys via friction stir processing. Scr Mater. 2008;58(5):361–366.
  • Chai F, Yan F, Wang W, et al. Microstructures and mechanical properties of AZ91 alloys prepared by multi-pass friction stir processing. J Mater Res. 2018 3312 [Internet]. 2018 [cited 2021 Aug 5];33:1789–1796. Available from; (12): https://link.springer.com/article/10.1557/jmr.2018.98
  • Vignesh RV, Padmanaban R, Govindaraju M. Investigations on the surface topography, corrosion behavior, and biocompatibility of friction stir processed magnesium alloy AZ91D. Surf Topogr Metrol Prop [Internet]. 2019 [cited 2021 Aug 5];7:025020. Available from; (2): https://iopscience.iop.org/article/10.1088/2051-672X/ab269c
  • 大輔桜田, 数良加藤, 光時末. 6061アルミニウム合金の水中摩擦圧接. 軽金属. 2002;52:2–6.
  • Feng AH, Xiao BL, Ma ZY, et al. Effect of friction stir processing procedures on microstructure and mechanical properties of Mg-Al-Zn Casting. Metall Mater Trans A. 2009 4010 [Internet]. 2009 [cited 2021 Aug 6];40:2447–2456. Available from; (10): https://link.springer.com/article/10.1007/s11661-009-9923-0
  • Sunil BR. Surface engineering by friction-assisted processes : methods, materials, and applications 1st editio.
  • Li XL, Bin CY, Wang X, et al. Effect of cooling rates on as-cast microstructures of Mg-9Al-xSi (x=1, 3) alloys. Trans Nonferrous Met Soc China. 2010;20:s393–s396.
  • Darras BM, Khraisheh MK, Abu-Farha FK, et al. Friction stir processing of commercial AZ31 magnesium alloy. J Mater Process Technol. 2007;191(1–3):77–81.
  • Darras B, Kishta E. Submerged friction stir processing of AZ31 Magnesium alloy. Mater Des. 2013;47:133–137.
  • Luo XC, Zhang DT, Zhang WW, et al. Tensile properties of AZ61 magnesium alloy produced by multi-pass friction stir processing: effect of sample orientation. Mater Sci Eng A. 2018;725:398–405.
  • Du XH, Wu BL. Using friction stir processing to produce ultrafine-grained microstructure in AZ61 magnesium alloy. Trans Nonferrous Met Soc China. 2008;18(3):562–565.
  • Zhou L, Li GH, Zha GD, et al. Effect of rotation speed on microstructure and mechanical properties of bobbin tool friction stir welded AZ61 magnesium alloy. 2018 Internet]. [cited 2021 Aug 5];23:596–605. Available from https://www.tandfonline.com/doi/abs/10.1080/13621718.2018.1432098
  • Asadi P, Mahdavinejad RA, Tutunchilar S. Simulation and experimental investigation of FSP of AZ91 magnesium alloy. Mater Sci Eng A. 2011;528(21):6469–6477.
  • Xiao BL, Yang Q, Yang J, et al. Enhanced mechanical properties of Mg–Gd–Y–Zr casting via friction stir processing. J Alloys Compd. 2011;509(6):2879–2884.
  • Mansoor B, Ghosh AK. Microstructure and tensile behavior of a friction stir processed magnesium alloy. Acta Mater. 2012;60(13–14):5079–5088.
  • Yang Q, Xiao BL, Ma ZY. Influence of process parameters on microstructure and mechanical properties of friction-stir-processed Mg-Gd-Y-Zr casting. Metall Mater Trans A 2012 436 [Internet]. 2012 [cited 2021 Aug 6];43:2094–2109. Available from;(6): https://link.springer.com/article/10.1007/s11661-011-1076-2
  • Palanivel S, Nelaturu P, Glass B, et al. Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy. Mater Des. 2015;65:934–952.
  • Cao G, Zhang D, Luo X, et al. Effect of aging treatment on mechanical properties and fracture behavior of friction stir processed Mg–Y–Nd alloy. J Mater Sci. 2016 5116 [Internet]. 2016 [cited 2021 Aug 6];51:7571–7584. Available from;(16): https://link.springer.com/article/10.1007/s10853-016-0036-z
  • Cao GH, Zhang DT. Microstructure and mechanical properties of submerged friction stir processing Mg-Y-Nd alloy. Mater Sci Forum. Internet]. 2015 [cited 2021 Aug 6];816:404–410. Available from https://www.scientific.net/MSF.816.404
  • Kondaiah VV, Pavanteja P, Mani Manvit M, et al. Surface engineering of ZE 41 Mg alloy by friction stir processing: effect of process parameters on microstructure and hardness evolution. Mater Today Proc. 2019;18:125–131.
  • Vasu C, Kja ND, Srinivas I, et al. Developing composite of ZE41 magnesium alloy- calcium by friction stir processing for biodegradable implant applications. Mater Today Proc. 2019;18:270–277.
  • Akbari M, Aliha M, Keshavarz S, et al. Effect of tool parameters on mechanical properties, temperature, and force generation during FSW. Proc Inst Mech Eng Part L J Mater Des Appl. Internet]. 2016 [cited 2021 Aug 6];233:1033–1043. Available from https://journals.sagepub.com/doi/10.1177/1464420716681591
  • Zhao Y, Huang X, Li Q, et al. Effect of friction stir processing with B4C particles on the microstructure and mechanical properties of 6061 aluminum alloy. Int J Adv Manuf Technol. 2015 789 [Internet]. 2015 [cited 2021 Aug 6];78:1437–1443. Available from;(9–12): https://link.springer.com/article/10.1007/s00170-014-6748-9
  • Asadi P, Givi MKB, Rastgoo A, et al. Predicting the grain size and hardness of AZ91/SiC nanocomposite by artificial neural networks. Int J Adv Manuf Technol. 2012 639 [Internet]. 2012 [cited 2021 Aug 6];63:1095–1107. Available from;(9–12): https://link.springer.com/article/10.1007/s00170-012-3972-z
  • Shojaeefard MH, Akbari M, Khalkhali A, et al. Effect of tool pin profile on distribution of reinforcement particles during friction stir processing of B4C/aluminum composites. Proc Inst Mech Eng Part L J Mater Des Appl. Internet]. 2016 [cited 2021 Aug 6];232:637–651. Available from https://journals.sagepub.com/doi/10.1177/1464420716642471
  • Givi MKB, Asadi P. Advances in friction-stir welding and processing. Adv Frict Weld Process 2014. Elsevier Ltd.
  • Marzbanrad J, Akbari M, Asadi P, et al. Characterization of the influence of tool pin profile on microstructural and mechanical properties of friction stir welding. Metall Mater Trans B. 2014 455 [Internet]. 2014 [cited 2021 Aug 6];45:1887–1894. Available from;(5): https://link.springer.com/article/10.1007/s11663-014-0089-9
  • Asadi P, Besharati Givi MK, Akbari M. Microstructural simulation of friction stir welding using a cellular automaton method: a microstructure prediction of AZ91 magnesium alloy. Int J Mech Mater Eng 2015 101 [Internet]. 2015 [cited 2021 Aug 6];10:1–14. Available from;(1): https://link.springer.com/articles/10.1186/s40712-015-0048-5
  • Shojaeefard MH, Behnagh RA, Akbari M, et al. Modelling and Pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm. Mater Des. 2013;44:190–198.
  • Shojaeefard MH, Akbari M, Khalkhali A, et al. Optimization of microstructural and mechanical properties of friction stir welding using the cellular automaton and Taguchi method. Mater Des. 2014;64:660–666.
  • Mounib M, Pavese M, Badini C, et al. Reactivity and microstructure of Al2O3-reinforced magnesium-matrix composites. Adv Mater Sci Eng. Internet]. 2014 [cited 2021 Aug 6];2014. Available from;2014:1–6. https://www.hindawi.com/journals/amse/2014/476079/
  • Faraji G, Asadi P. Characterization of AZ91/alumina nanocomposite produced by FSP. Mater Sci Eng A. 2011;528(6):2431–2440.
  • Kleiner S, Beffort O, Uggowitzer PJ. Microstructure evolution during reheating of an extruded Mg–Al–Zn alloy into the semisolid state. Scr Mater. 2004;51(5):405–410.
  • Ma ZY, Sharma SR, Mishra RS, et al. Microstructural modification of cast aluminum alloys via friction stir processing. Mater Sci Forum. Internet]. 2003 [cited 2021 Aug 6];426–432:2891–2896. Available from https://www.scientific.net/MSF.426-432.2891
  • Chang CI, Lee CJ, Huang JC. Relationship between grain size and Zener–Holloman parameter during friction stir processing in AZ31 Mg alloys. Scr Mater. 2004;51(6):509–514.
  • Azizieh M, Kokabi AH, Abachi P. Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing. Mater Des. 2011;32(4):2034–2041.
  • Ahmadkhaniha D, Heydarzadeh Sohi M, Salehi A, et al. Formations of AZ91/Al2O3 nano-composite layer by friction stir processing. J Magnes Alloy. 2016;4(4):314–318.
  • Azizieh M, Kokabi AH, Abachi P. Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing. Mater Des. 2011;32(4):2034–2041.
  • Khayyamin D, Mostafapour A, Keshmiri R. The effect of process parameters on microstructural characteristics of AZ91/SiO2 composite fabricated by FSP. Mater Sci Eng A. 2013;559:217–221.
  • Lee CJ, Huang JC, Hsieh PJ. Mg based nano-composites fabricated by friction stir processing. Scr Mater. 2006;54(7):1415–1420.
  • Chang CI, Wang YN, Pei HR, et al. On the Hardening of friction stir processed Mg-AZ31 based composites with 5–20% Nano-ZrO2 and Nano-SiO2 Particles. Mater Trans. 2006;47(12):2942–2949.
  • Navazani M, Dehghani K. Fabrication of Mg-ZrO2 surface layer composites by friction stir processing. J Mater Process Technol. 2016;229:439–449.
  • Morisada Y, Fujii H, Nagaoka T, et al. Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31. Mater Sci Eng A. 2006;433(1–2):50–54.
  • ERFAN Y, KASHANI-BOZORG SF. Fabrication of mg/sic nanocomposite surface layer using friction stir processing technique. Int J Nanosci. 2012;10(4n05):1073–1076.
  • Asadi P, Givi MKB, Faraji G. Producing Ultrafine-Grained AZ91 from As-Cast AZ91 by FSP. Mater Manuf Process Internet]. 2010 [cited 2021 Aug 6];25:1219–1226. Available from;(11): https://www.tandfonline.com/doi/abs/10.1080/10426911003636936
  • Balakrishnan M, Dinaharan I, Palanivel R, et al. Synthesize of AZ31/TiC magnesium matrix composites using friction stir processing. J Magnes Alloy. 2015;3(1):76–78.
  • Morisada Y, Fujii H, Nagaoka T, et al. MWCNTs/AZ31 surface composites fabricated by friction stir processing. Mater Sci Eng A. 2006;419(1–2):344–348.
  • Jamshidijam M, Akbari-Fakhrabadi A, Masoudpanah SM, et al. Wear behavior of multiwalled carbon nanotube/AZ31 composite obtained by friction stir processing. Tribol Trans. Internet]. 2013 [cited 2021 Aug 7];56:827–832. Available from;(5): https://www.tandfonline.com/doi/abs/10.1080/10402004.2013.804969
  • Thomas WM, Nicholas ED. Friction stir welding for the transportation industries. Mater Des. 1997;18(4–6):269–273.
  • Mishra RS, Mahoney MW. Friction stir welding and processing. ASM International; 2007.
  • Sanderson A, Punshon CS, Russell JD. Advanced welding processes for fusion reactor fabrication. Fusion Eng Des. 2000;49–50:77–87.
  • Hangai Y, Utsunomiya T. Fabrication of porous aluminum by friction stir processing. Metall Mater Trans A 2008 402 [Internet]. 2008 [cited 2021 Aug 7];40:275–277. Available from ;(2): https://link.springer.com/article/10.1007/s11661-008-9733-9
  • Hangai Y, Koyama S, Hasegawa M, et al. Fabrication of aluminum foam/dense steel composite by friction stir welding. Metall Mater Trans A. 2010 419 [Internet]. 2010 [cited 2021 Aug 7];41:2184–2186. Available from;(9): https://link.springer.com/article/10.1007/s11661-010-0353-9
  • Hangai Y, Utsunomiya T, Hasegawa M. Effect of tool rotating rate on foaming properties of porous aluminum fabricated by using friction stir processing. J Mater Process Technol. 2010;210(2):288–292.
  • Arab SM, Zebarjad SM, Jahromi SAJ. Fabrication of AZ31/MWCNTs surface metal matrix composites by friction stir processing: investigation of microstructure and mechanical properties. J Mater Eng Perform. 2017 2611 [Internet]. 2017 [cited 2021 Aug 7];26:5366–5374. Available from https://link.springer.com/article/10.1007/s11665-017-2763-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.