326
Views
3
CrossRef citations to date
0
Altmetric
Review Article

A critical review on the progress of MQL in machining hardened steels

&
Pages 3834-3858 | Accepted 27 Jan 2022, Published online: 14 Feb 2022

References

  • Totten GE 2nd. Steel heat treatment: equipment and process design 2. Boca Raton: CRC Press; 2007.
  • Zahaf MZ, and Benghersallah M. Surface roughness and vibration analysis in end milling of annealed and hardened bearing steel. Meas : Sens. 2020;13: 10035.
  • D’Addona DM, Raykar SJ. Analysis of surface roughness in hard turning using wiper insert geometry. Proc CIRP. 2016;41:841–846.
  • Zaman PB, Dhar NR. Multi-criteria process optimisation for better machinability in turning medium carbon steel using composite desirability approach. Int J Manuf Res. 2021;16(3):280–308.
  • da Silva Rb, Vieira JM, Cardoso RN, et al. Tool wear analysis in milling of medium carbon steel with coated cemented carbide inserts using different machining lubrication/cooling systems. Wear. 2011;271(9–10):2459–2465.
  • Alrashdan A, Bataineh O, Shbool M. Multi-criteria end milling parameters optimization of AISI D2 steel using genetic algorithm. Int J Adv Manuf Technol. 2014;73(5–8):1201–1212.
  • Khan MM, Mithu MA, Dhar NR. Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable oil-based cutting fluid. J Mat Proc Technol. 2009;209(15–16):5573–5583.
  • Lawal SA, Choudhury IA, Nukman Y. A critical assessment of lubrication techniques in machining processes: a case for minimum quantity lubrication using vegetable oil-based lubricant. J Clean Prod. 2013;41:210–221.
  • Sultana MN, Dhar NR. Optimization of cryogenic assisted turning characteristics using hybrid Taguchi-GRA-PCA and modified weighted TOPSIS with regression analysis. Arc Mech Eng. 2021;68(1):1–27.
  • Dhar NR, Kamruzzaman M, Ahmed M. Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel. J mat process Technol. 2006a;172(2):299–304.
  • Dhar NR, Islam MW, Islam S, et al. The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI-1040 steel. J mat process Technol. 2006b;171(1):93–99.
  • Pimenov DY, Mia M, Gupta MK, et al. Improvement of machinability of Ti and its alloys using cooling-lubrication techniques: a review and future prospect. J Mat Res Technol. 2021;719–753. DOI:10.1016/j.jmrt.2021.01.031
  • Osman KA, Hö Ü, Şeker U. Application of minimum quantity lubrication techniques in machining process of titanium alloy for sustainability: a review. Int J Adv Manuf Technol. 2019;100(9):2311–2332.
  • Boswell B, Islam MN, Davies IJ, et al. A review identifying the effectiveness of minimum quantity lubrication (MQL) during conventional machining. Int J Adv Manuf Technol. 2017;92(1):321–340.
  • Said Z, Gupta M, Hegab H, et al. A comprehensive review on minimum quantity lubrication (MQL) in machining processes using nano-cutting fluids. Int J Adv Manuf Technol. 2019;105(5):2057–2086.
  • Jayal AD, Balaji AK, Sesek R, et al. Machining performance and health effects of cutting fluid application in drilling of A390 cast aluminum alloy. J Manuf proc. 2007;9(2):137–146.
  • Amini S, Khakbaz H, Barani A. Improvement of near-dry machining and its effect on tool wear in turning of AISI 4142. Mat Manuf Proc. 2015;30(2):241–247.
  • Fratila D. Numerical and experimental approach of cutting temperatures to green turning of 42CrMo4 steel. Mat Manuf Proc. 2016;31(5):657–666.
  • Pervaiz S, Anwar S, Qureshi I, et al. Recent advances in the machining of titanium alloys using minimum quantity lubrication (MQL) based techniques. Int J Prec Eng Manuf-Green Technol. 2019;6(1):133–145.
  • Leppert T. Surface layer properties of AISI 316L steel when turning under dry and with minimum quantity lubrication conditions. Proc Ins Mech Eng, Part B: J Eng Manuf. 2012;226(4):617–631.
  • Hadad M, Sadeghi B. Minimum quantity lubrication-MQL turning of AISI 4140 steel alloy. J Clean Prod. 2013;54:332–343.
  • Elmunafi MH, Kurniawan D, Noordin MY. Use of castor oil as cutting fluid in machining of hardened stainless steel with minimum quantity of lubricant. Proc CIRP. 2015;26:408–411.
  • Masoudi S, Vafadar A, Hadad M, et al. Experimental investigation into the effects of nozzle position, workpiece hardness, and tool type in MQL turning of AISI 1045 steel. Mat Manuf Proc. 2018;33(9):1011–1019.
  • Agrawal SM, Patil NG. Experimental study of nonedible vegetable oil as a cutting fluid in machining of M2 Steel using MQL. Proc Manuf. 2018;20:207–212.
  • Sampaio MA, Ár M, Laurindo CA, et al. Influence of minimum quantity of lubrication (MQL) when turning hardened SAE 1045 steel: a comparison with dry machining. Int J Adv Manuf Technol. 2018;98(1):959–968.
  • Gupta MK, Mia M, Jamil M, et al. Machinability investigations of hardened steel with biodegradable oil-based MQL spray system. Int J Adv Manuf Technol. 2020;108:735–748.
  • García-Nieto PJ, García-Gonzalo E, Vilán JV, et al. A new predictive model based on the PSO-optimized support vector machine approach for predicting the milling tool wear from milling runs experimental data. Int J Adv Manuf Technol. 2016;86(1):769–780.
  • Yan L, Yuan S, Liu Q. Influence of minimum quantity lubrication parameters on tool wear and surface roughness in milling of forged steel. Chi J Mech Eng. 2012;25(3):419–429.
  • Mulyadi IH, Mativenga PT. Random or intuitive nozzle position in high-speed milling using minimum quantity lubricant. Proc Ins Mech Eng, Part B: J Eng Manuf. 2014;228(1):21–30.
  • Mia M. Mathematical modeling and optimization of MQL assisted end milling characteristics based on RSM and Taguchi method. Measurement. 2018;121:249–260.
  • Taylor CM, Simpson T, Crawforth P. Resource consumption and process performance in minimum quantity lubricated milling of tool steel. Proc Manuf. 2020;43:463–470.
  • da Silva Lr, Bianchi EC, Fusse RY, et al. Analysis of surface integrity for minimum quantity lubricant—MQL in grinding. Int J Mach Tools Manuf. 2007;47(2):412–418.
  • Sadeghi MH, Hadad MJ, Tawakoli T, et al. An investigation on surface grinding of AISI 4140 hardened steel using minimum quantity lubrication-MQL technique. Int J Mat Form. 2010;3(4):241–251.
  • Barczak LM, Batako AD. Application of minimum quantity lubrication in grinding. Mat Manuf Proc. 2012;27(4):406–411.
  • Yao C, Wang T, Xiao W, et al. Experimental study on grinding force and grinding temperature of Aermet 100 steel in surface grinding. J Mat Proc Technol. 2014;214(11):2191–2199.
  • Tawakoli T, Hadad MJ, Sadeghi MH. Influence of oil mist parameters on minimum quantity lubrication–MQL grinding process. Int J Mach Tools Manuf. 2010;50(6):521–531.
  • Khan AM, Jamil M, Mia M, et al. Multi-objective optimization for grinding of AISI D2 steel with Al2O3 wheel under MQL. Materials. 2018;11(11):2269.
  • Sharmin I, Moon M, Talukder S, et al. Impact of nozzle design on grinding temperature of hardened steel under MQL condition. Mat Today: Proc. 2021;38:3232–3237.
  • Zeilmann RP, Nicola GL, Vacaro T, et al. Implications of the reduction of cutting fluid in drilling AISI P20 steel with carbide tools. Int J Adv Manuf Technol. 2012;58(5):431–441.
  • Soepangkat BO, Suhardjono PB. Application of Taguchi-grey method to optimize drilling of EMS 45 steel using minimum quantity lubrication (MQL) with multiple performance characteristics. In AIP Conference Proceedings. Vol. 1855, No. 1; 2017 Jun 15; AIP Publishing LLC; p. 020015
  • Tasdelen B, Wikblom T, Ekered S. Studies on minimum quantity lubrication (MQL) and air cooling at drilling. J Mat Proc Technol. 2008;200(1–3):339–346.
  • Shaikh V, Boubekri N. Effects of minimum quantity lubrication in drilling 1018 steel. J Manuf Technol Res. 2010;1:1–4.
  • Kuram E, Ozcelik B, Demirbas E, et al. Evaluation of new vegetable-based cutting fluids on thrust force and surface roughness in drilling of AISI 304 using Taguchi method. Mat Manuf Proc. 2011;26(9):1136–1146.
  • Sultan AZ, Sharif S, Nor FM, et al. Minimum quantity of lubricant drilling of stainless steel using refined palm olein: effect of coating tool on surface roughness and tool wear. Proc Manuf. 2019;30:427–434.
  • Pereira O, Urbikaín G, Rodríguez A, et al. Process performance and life cycle assessment of friction drilling on dual-phase steel. J Clean Prod. 2019;213:1147–1156.
  • Reddy NS, Rao PV. Experimental investigation to study the effect of solid lubricants on cutting forces and surface quality in end milling. Int J Mach Tools Manuf. 2006;46(2):189–198.
  • Kiliçay K, Ulutan M. Investigation of the solid lubrication effect of commercial boron-based compounds in end milling. Int J Prec Eng Manuf. 2016;17(4):517–524.
  • Makhesana MA, Patel KM. An assessment of environmentally conscious lubrication techniques in grinding: use of minimum quantity lubrication, solid lubricants and cryogenic cooling. Int J Sus Manuf. 2018;4(1):23–38.
  • Muaz M, Choudhury SK. Experimental investigations and multi-objective optimization of MQL-assisted milling process for finishing of AISI 4340 steel. Measurement. 2019;138:557–569.
  • Makhesana MA, Patel KM. Investigations on machinability aspects of AISI 52100 with minimum quantity solid lubrication. Proc Manuf. 2020;48:11–17.
  • Tiwari A, Makhesana MA, Patel KM, et al. Experimental investigations on the applicability of solid lubricants in processing of AISI 4140 steel. Mat Today: Proc. 2020;26:2921–2925.
  • Duc TM, Dong PQ, Ngoc TB. Applied research of nanofluids in MQL to improve hard milling performance of 60Si2Mn steel using carbide tools. Am J Mech Eng. 2017;5(5):228–233.
  • Eltaggaz A, Hegab H, Deiab I, et al. Hybrid nano-fluid-minimum quantity lubrication strategy for machining austempered ductile iron (ADI). Int J Int Des Manuf (IJIDeM). 2018;12(4):1273–1281.
  • Duan Z, Yin Q, Li C, et al. Milling force and surface morphology of 45 steel under different Al2O3 nanofluid concentrations. Int J Adv Manuf Technol. 2020;107(3):1277–1296.
  • Das A, Patel SK, Biswal BB, et al. Performance evaluation of various cutting fluids using MQL technique in hard turning of AISI 4340 alloy steel. Measurement. 2020;150:107079.
  • Virdi RL, Chatha SS, Singh H. Processing characteristics of different vegetable oil-based nanofluid MQL for grinding of Ni-Cr alloy. Adv Mat Proc Technol. 2020;1–4.
  • Uysal A, Demiren F, Altan E. Applying minimum quantity lubrication (MQL) method on milling of martensitic stainless steel by using nano MoS2 reinforced vegetable cutting fluid. Proc-Soc Behav Sci. 2015;195:2742–2747.
  • Kumar Singh R, Sharma AK, Mandal V, et al. Influence of graphene-based nanofluid with minimum quantity lubrication on surface roughness and cutting temperature in turning operation. Mat Today: Proc. 2018;5(11):24578–24586.
  • Yıldırım ÇV. Investigation of hard turning performance of eco-friendly cooling strategies: Cryogenic cooling and nanofluid based MQL. Tribol Int. 2020;144:106127.
  • Sharmin I, Gafur MA, Dhar NR. Preparation and evaluation of a stable CNT-water based nano cutting fluid for machining hard-to-cut material. SN Appl Sci. 2020;2(4):1–8.
  • Amrita M, Srikant RR, Venkataramana VS. Optimisation of cutting parameters for cutting temperature and tool wear in turning AISI4140 under different cooling conditions. Adv Mat Proc Technol. 2020.
  • Pal A, Chatha SS, Sidhu HS. Experimental investigation on the performance of MQL drilling of AISI 321 stainless steel using nano-graphene enhanced vegetable-oil-based cutting fluid. Tribol Int. 2020;151:106508.
  • Kumar MS, Krishna VM. An investigation on turning AISI 1018 steel with hybrid biodegradeable Nanofluid/MQL incorporated with combinations of CuO-Al2O3 Nanoparticles. Mat Today: Proc. 2020;24:1577–1584.
  • Sharma AK, Tiwari AK, Dixit AR, et al. Measurement of machining forces and surface roughness in turning of AISI 304 steel using alumina-MWCNT hybrid nanoparticles enriched cutting fluid. Measurement. 2020;150:107078.
  • Duc TM, Chien TQ, Chien TQ. Performance evaluation of MQL parameters using Al2O3 and MoS2 nanofluids in hard turning 90CrSi steel. Lubricants. 2019;7(5):40.
  • Li C, Zhang D, Jia D, et al. Experimental evaluation on tribological properties of nano–particle jet MQL grinding. Int J Surf Sci Eng. 2015;9(2–3):159–175.
  • Raju RA, Andhare A, Sahu NK. Performance of multi-walled carbon nanotube-based nanofluid in turning operation. Mat Manuf Proc. 2017;32(13):1490–1496.
  • Goindi GS, Chavan SN, Mandal D, et al. Investigation of ionic liquids as novel metalworking fluids during minimum quantity lubrication machining of a plain carbon steel. Proc CIRP. 2015;26:341–345.
  • Sani AS, Abd Rahim E, Sharif S, et al. Machining performance of vegetable oil with phosphonium-and ammonium-based ionic liquids via MQL technique. J clean prod. 2019;209:947–964.
  • Huang S, Wang Z, Yao W, et al. Tribological evaluation of contact-charged electrostatic spray lubrication as a new near-dry machining technique. Tribol Int. 2015;91:74–84.
  • Xu X, Huang S, Wang M, et al. A study on process parameters in end milling of AISI-304 stainless steel under electrostatic minimum quantity lubrication conditions. Int J Adv Manuf Technol. 2017;90(1–4):979–989.
  • Huang S, Lv T, Wang M, et al. Effects of machining and oil mist parameters on electrostatic minimum quantity lubrication–EMQL turning process. Int J Prec Eng Manuf-Green Technol. 2018;5(2):317–326.
  • Su Y, Lu Q, Yu T, et al. Machining and environmental effects of electrostatic atomization lubrication in milling operation. Int J Adv Manuf Technol. 2019;104(5):2773–2782.
  • Lv T, Xu X, Yu A, et al. Oil mist concentration and machining characteristics of SiO2 water-based nano-lubricants in electrostatic minimum quantity lubrication-EMQL milling. J Mat Proc Technol. 2021;290:116964.
  • Shah P, Gadkari A, Sharma A, et al. Comparison of machining performance under MQL and ultra-high voltage EMQL conditions based on tribological properties. Tribol Int. 2021;153:106595.
  • García-Martínez E, Miguel V, Martínez-Martínez A, et al. Sustainable lubrication methods for the machining of titanium alloys: an overview. Materials. 2019;12(23):3852.
  • Maruda RW, Legutko S, Krolczyk GM, et al. Influence of cooling conditions on the machining process under MQCL and MQL conditions. Tehnički vjesnik. 2015;22(4):965–970.
  • Mia M, Morshed MS, Kharshiduzzaman M, et al. Prediction and optimization of surface roughness in minimum quantity coolant lubrication applied turning of high hardness steel. Measurement. 2018;118:43–51.
  • Dong PQ, Duc TM, Long TT. Performance evaluation of MQCL hard milling of SKD 11 tool steel using MoS2 nanofluid. Metals. 2019;9(6):658.
  • Duc TM, Long TT, Van Thanh D. Evaluation of minimum quantity lubrication and minimum quantity cooling lubrication performance in hard drilling of Hardox 500 steel using Al2O3 nanofluid. Adv Mech Eng. 2020;12(2):1687814019888404.
  • Varadarajan AS, Philip PK, Ramamoorthy B. Investigations on hard turning with minimal cutting fluid application (HTMF) and its comparison with dry and wet turning. Int J Mach Tools Manuf. 2002;42(2):193–200.
  • Al Bashir M, Mia M, Dhar NR. Investigations on surface milling of hardened AISI 4140 steel with pulse jet MQL applicator. J Ins Eng (India): Series C. 2018;99(3):301–314.
  • Mane S, and Kumar S. Analysis of surface roughness during turning of AISI 52100 hardened alloy steel using minimal cutting fluid application. Adv Mat Proc Technol. 2020;1–12.
  • Tunc LT, Gu Y, Burke MG. Effects of minimal quantity lubrication (MQL) on surface integrity in robotic milling of austenitic stainless steel. Proc CIRP. 2016;45:215–218.
  • Werda S, Duchosal A, Le Quilliec G, et al. Minimum quantity lubrication advantages when applied to insert flank face in milling. Int J Adv Manuf Technol. 2017;92(5):2391–2399.
  • Zaman PB, Dhar NR. Design and evaluation of an embedded double jet nozzle for MQL delivery intending machinability improvement in turning operation. J Manuf Proc. 2019;44:179–196.
  • Singh R, Dureja JS, and Dogra M. Performance evaluation of textured carbide tools under environment-friendly minimum quantity lubrication turning strategies. J Braz Soc Mech Sci Eng. 2019;41(2):87.
  • Huang WT, Liu WS, Wu DH. Investigations into lubrication in grinding processes using MWCNTs nanofluids with ultrasonic-assisted dispersion. J Clean Prod. 2016;137:1553–1559.
  • Pereira O, Rodríguez A, Fernández-Abia AI, et al. Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304. J Clean Prod. 2016;139:440–449.
  • Naveena B, Mariyam Thaslima SS, Savitha V, et al. Simplified MQL system for drilling AISI 304 SS using cryogenically treated drills. Mat Manuf Proc. 2017;32(15):1679–1684.
  • Hanenkamp N, Amon S, Gross D. Hybrid supply system for conventional and CO2/MQL-based cryogenic cooling. Proc CIRP. 2018;77:219–222.
  • Wika KK, Litwa P, Hitchens C. Impact of supercritical carbon dioxide cooling with Minimum Quantity Lubrication on tool wear and surface integrity in the milling of AISI 304L stainless steel. Wear. 2019;426:1691–1701.
  • Lopes JC, Fragoso KM, Garcia MV, et al. Behavior of hardened steel grinding using MQL under cold air and MQL CBN wheel cleaning. Int J Adv Manuf Technol. 2019;105(10):4373–4387.
  • Ribeiro FS, Lopes JC, Garcia MV, et al. New knowledge about grinding using MQL simultaneous to cooled air and MQL combined to wheel cleaning jet technique. Int J Adv Manuf Technol. 2020;109(3):905–917.
  • Nadolny K, Kieraś S. Experimental studies on the centrifugal MQL-CCA method of applying coolant during the internal cylindrical grinding process. Materials. 2020;13(10):2383.
  • Upadhyay V, Jain PK, Mehta NK. Machining with minimum quantity lubrication: a step towards green manufacturing. Int J Mach Mach Mat. 2013;13(4):349–371.
  • Sharma AK, Tiwari AK, Dixit AR. Progress of nanofluid application in machining: a review. Mat Manuf Proc. 2014;30(7):813–828.
  • Chinchanikar S, Choudhury SK. Machining of hardened steel—experimental investigations, performance modeling and cooling techniques: a review. Int J MachTools Manuf. 2014;89:95–109.
  • Rifat M, Rahman MH, Das D. A review on application of nanofluid MQL in machining. In.AIP Conference Proceedings 919 (1); 2017 Dec 28; AIP Publishing LLC; p. 020015.
  • Roy S, Kumar R, Sahoo AK, et al. A brief review on effects of conventional and nano particle based machining fluid on machining performance of minimum quantity lubrication machining. Mat Today: Proc. 2019;18:5421–5431.
  • Katna R, Suhaib M, Agrawal N. Nonedible vegetable oil-based cutting fluids for machining processes–a review. Mat Manuf Proc. 2019;35(1):1–32.
  • Sultana MN, Dhar NR, Zaman PB. A Review on different cooling/lubrication techniques in metal cutting. Am J Mech Appl. 2019;7(4):71.
  • Sultana MN, Zaman PB, and Dhar NR. Effects of Nano-fluids Assisted MQL in Machining Processes: A Review. Int Conf Mech Ind Energy Eng . 2020 Dec 21-22;6:49. Khulna, Bangladesh
  • Singh G, Gupta MK, Hegab H, et al. Progress for sustainability in the mist assisted cooling techniques: a critical review. Int J Adv Manuf Technol. 2020:1–32.
  • Hamran NN, Ghani JA, Ramli R, et al. A review on recent development of minimum quantity lubrication for sustainable machining. J Clean Prod. 2020;268:122165.
  • Singh R. Minimum quantity lubrication turning of hard to cut materials–A review. Mat Today. 2020;37:3601–3605.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.