167
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microstructure and nanoindentation studies of M23C6 carbides in Fe-18Cr-8Ni steel after long-term ageing at high temperature

, , &
Pages 3859-3874 | Accepted 27 Jan 2022, Published online: 17 Feb 2022

References

  • Khatak H, Raj B. Corrosion of austenitic stainless steels: mechanism, mitigation and monitoring. Cambridge (UK): Woodhead publishing; 2002.
  • Garverick L. Corrosion in the petrochemical industry. Materials Park Ohio (OH): ASM international; 1994.
  • Feng Y, Xu C, Bu C, et al. Research on austenitizing behavior and mechanical properties of 40CrNi2Si2MoVA steel. Adv Mater Process Technol. 2017;3(4):616–626.
  • Namdev A, Telang A, and Purohit R, et al. The effect of inter critical heat treatment on mechanical and wear properties of AISI 1015 steel. Adv Mater Process Technol. 2021;1–11.
  • Hong HU, Nam SW. The occurrence of grain boundary serration and its effect on the M23C6 carbide characteristics in an AISI 316 stainless steel. Mater Sci Eng A. 2002;332(1–2):255–261.
  • Farooqa M, Sandströma R, Lundberg M. Precipitation during long time ageing in the austenitic stainless steel 310. Mater High Temp. 2012;29(1):8–16.
  • Minami Y, Kimura H, Ihara Y. Microstructural changes in austenitic stainless steels during long-term aging. Mater Sci Technol. 1986;2(8):795–806.
  • Wang W, Wang Z, Li W, et al. Evolution of M23C6 phase in HR3C steel aged at 650 °C. Mater High Temp. 2016;33(3):276–282.
  • Weiss B, Stickler R. Phase instabilities during high temperature exposure of 316 austenitic stainless steel. Met Trans. 1972;3(4):851–866
  • Lewis MH, Hattersley B. Precipitation of M23C6 in austenitic steels. Acta Metall. 1965;13(11):1159–1168.
  • Beckitt FR, Clark BR. The shape and mechanism of formation of M23C6 carbide in austenite. Acta Metall. 1967;15(1):113–129.
  • Singhal LK, Martin JW. The growth of M23C6 carbide on incoherent twin boundaries in austenite. Acta Metall. 1967;15(10):1603–1610.
  • Lee TH, Ha HY, Kim SJ. Precipitation of second phases in high-interstitial-alloyed austenitic steel. Metall Mater Trans A Phys Metall Mater Sci. 2011;42(12):3543–3548.
  • Zheng L, Hu X, Kang X, et al. Precipitation of M23C6 and its effect on tensile properties of 0.3C-20Cr-11Mn-1Mo-0.35N steel. Mater Des. 2015;78:42–50.
  • Zhang Y, Zhu L, Ql A, et al. Microstructural evolution and the effect on mechanical properties of S30432 heat-resistant steel during aging at 650°C. ISIJ Int. 2010;50(4):596–600.
  • Zhou Y, Li Y, Liu Y, et al. Precipitation behavior of type 347H heat-resistant austenitic steel during long-term higherature aging. J Mater Res. 2015;30(23):3642–3652.
  • Godec M, and Balantič DAS. Coarsening behaviour of M23C6 carbides in creep-resistant steel exposed to high temperatures. Sci Rep. 2016;6(1):1–7.
  • Gao Q, Zhang Y, Zhang H, et al. Precipitates and Particles Coarsening of 9Cr-1.7W-0.4Mo-Co Ferritic Heat-Resistant Steel after Isothermal Aging. Sci Rep. 2017;7(1):1–11.
  • Kolli S, Javaheri V, Kömi J, et al. On the role of grain size and carbon content on the sensitization and desensitization behavior of 301 austenitic stainless steel. Metals. 2019;9(11):1193–1208.
  • Kaneko K, Fukunaga T, Yamada K, et al. Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel. Scr Mater. 2011;65(6):509–512.
  • Bai X, Pan J, Chen G, et al. Effect of high temperature aging on microstructure and mechanical properties of HR3C heat resistant steel. Mater Sci Technol. 2014;30(2):205–210.
  • Qin F, Li Y, He W, et al. Aging precipitation behavior and its influence on mechanical properties of Mn18Cr18N austenitic stainless steel. Met Mater Int. 2017;23(6):1087–1096.
  • Wang W, Wang ZW, Li WS, et al. Influence of precipitated phases on properties during prolonged aging in TP347H steel at 700 °C. Mater High Temp. 2017;34(3):149–156.
  • Saucedo-Muñoz ML, Ortiz-Mariscal A, Lopez-Hirata VM, et al. Precipitation analysis of as-cast HK40 steel after isothermal aging. Int J Miner Metall Mater. 2017;24(10):1125–1133.
  • Wang B, Liu ZC, Cheng SC, et al. Microstructure evolution and mechanical properties of HR3C steel during Long-term aging at high temperature. J Iron Steel Res Int. 2014;21(8):765–773.
  • Broitman E. Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: a Critical Overview. Tribol Lett. 2017;65(1):1–18.
  • Yovanovich M. Micro and macro hardness measurements, correlations, and contact models. Proceedings of the Collection of Technical Papers - 44th AIAA Aerospace Sciences Meeting and Exhibit; 2006 Jan 09 - 12; Reno, Nevada. p. 1–28
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(6):1564–1583.
  • Oliver WC, Brotzen FR. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J Mater Res. 1992;7(3):613–617.
  • Vander Voort GF. Metallography, principles and practice. Materials Park Ohio (OH): ASM international; 1999.
  • Zambrano OA, Valdés J, Aguilar Y, et al. Hot deformation of a Fe-Mn-Al-C steel susceptible of κ-carbide precipitation. Mater Sci Eng A. 2017;689:269–285.
  • Samuels LE. Light microscopy of carbon steels. Materials Park Ohio (OH): ASM International; 1999.
  • Rowolt C, Milkereit B, Springer A, et al. Dissolution and precipitation of copper-rich phases during heating and cooling of precipitation-hardening steel X5CrNiCuNb16-4 (17-4 PH). J Mater Sci. 2020;55(27):13244–13257.
  • Berns H, Theisen W. Ferrous materials: steel and cast iron. Berlin: Springer Science & Business Media; 2008.
  • Smallman RE, Bishop RJ. Metals and Materials: science, Processes, Applications. Oxford: Elsevier; 2013.
  • Hao K, Zhang C, Zeng X, et al. Effect of heat input on weld microstructure and toughness of laser-arc hybrid welding of martensitic stainless steel. J Mater Process Technol. 2017;245:7–14.
  • Campbell FC. Elements of metallurgy and engineering alloys. Materials Park Ohio (OH): ASM International; 2008.
  • Krauss G. Steels: processing, structure, and performance. Materials Park Ohio (OH): ASM International; 2015.
  • Smallman RE, Ngan AHW. Physical metallurgy and advanced materials. Oxford: Elsevier; 2011.
  • Lifshitz IM, Slyozov VV. The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids. 1961;19(1–2):35–50.
  • Wagner C. Theorie der alterung von niederschlägen durch umlösen (Ostwald‐reifung). Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für Phys Chemie. 1961;65(7‐8):581–591.
  • Groza JR, Shackelford JF. Materials processing handbook. Boca Raton: CRC press; 2007.
  • Vodopivec F, Steiner‐Petrovič D, Žužek B, et al. Coarsening Rate of M23 C6 and MC Particles in a High Chromium Creep Resistant Steel. Steel Res Int. 2013;84(11):1110–1114.
  • Trotter G, Hu B, Sun AY, et al. Precipitation kinetics during aging of an alumina-forming austenitic stainless steel. Mater Sci Eng A. 2016;667:147–155.
  • Dayal RK, Parvathavarthini N, Raj B. Influence of metallurgical variables on sensitisation kinetics in austenitic stainless steels. Int Mater Rev. 2005;50(3):129–155.
  • Parvathavarthini N, Mulki S, Dayal RK, et al. Sensitization control in AISI 316L(N) austenitic stainless steel: defining the role of the nature of grain boundary. Corros Sci. 2009;51(9):2144–2150.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.