110
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Characterization and evaluation of microstructure and mechanical properties of ZrO2 reinforced Al6061 metal matrix composite using stir casting process

, , &
Pages 4306-4319 | Accepted 11 Apr 2022, Published online: 24 Apr 2022

References

  • Miracle DB, Sengupta S, Yang Q. Metal matrix composites – from science to technological significance. Cancer Research. 2005;65(7):2526–2540.
  • Ghali E. Corrosion resistance of aluminum and magnesium alloys: understanding. In: Performance, and Testing. Vol. 12. Hoboken, New Jersey: John Wiley & Sons; 2010. p. 316–347. 13: 978-0-471-71576-4.
  • Avedesian MM, Baker H. asm specialty handbook: magnesium and magnesium alloys. ASM int 1999;178–185 https://www.asminternational.org/handbooks/-/journal_content/56/10192/06770G/PUBLICATION.
  • Taha MA. Industrialization of cast aluminum matrix composites (AMCCs). Mater Manuf Process. 2001;16(5):619–641.
  • Kim CS, Cho K, Manjili MH, et al. Mechanical performance of particulate reinforced Al metal- matrix composites (MMCs) and Al Metal-Matrix Nano Composites (MMNCs). J Mater Sci. 2017;52(23):13319–13349. https://doi.org/10.1007/s10853-017-1378-x
  • Anthony M, Schultz BF, Rohatgi PK, et al. Recent advances in aluminium metal matrix Composites: a critical review. In Elmarakbi A, editor. Metal matrix composites for automotive applications. John Wiley & Sons; 2014. DOI:10.1002/9781118535288
  • Bhoi NK, Singh H, Pratap S. Developments in the aluminum metal matrix composites reinforced by micro/nano particles – a review. J Compos Mater. 2020;54(6):813–833.
  • Haghshenas M, Gerlich A. Joining of automotive sheet materials by friction-based welding methods: a review. Eng Sci Technol Int J. 2018;21(1):130–148.
  • Hirsch J. Recent development in aluminium for automotive applications. Trans Nonferrous Met Soc China. 2014;24(7):1995–2002. h ttps://d oi.o rg/10.10 16/S1003- 6326(14)63 305-7
  • Macke A, Schultz BF. Metal matrix composites offer the automotive industry and opportunity to reduce vehicle weight, improve performance. Adv Mater Process. 2012;170:19–23.
  • Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater Des. 2014;56:862–871.
  • Rohatgi P. Cast aluminum-matrix composites for automotive applications. JOM. 1991;43(4):10–15.
  • Rambabu P, Prasad NE, Kutumbarao VV, et al. Aluminium alloys for aerospace applications. Areospace mater mater technol. 2017; 29–52. DOI:10.1007/978-981-10-2143-5.
  • Razavi M, Farajipour AR, Zakeri M, et al. Production of Al2O3– siC nano-composites by spark plasma sintering. Boletín de la Sociedad Española de Cerámica y Vidrio. 2017;56(4):186–194.
  • Thostenson ET, Chou TW. Microwave processing: fundamentals and applications, compos. A appl. Sci Manuf. 1999;30(9):1055–1071.
  • Bhatt J, Balachander N, Shekher S, et al. Synthesis of nanostructured Al–Mg–SiO2 metal matrix composites using highenergy ball milling and spark plasma sintering. J Alloy Compd. 2012;536:S35–S40.
  • Xiong H, Wu Y, Li Z, et al. Comparison of Ti (C, N)-based cermets by vacuum and gas-pressure sintering: microstructure and mechanical properties. Ceram Int. 2018;44(1):805–813.
  • Rangrej S, Pandya S, Menghani J. Effects of reinforcement additions on properties of aluminium matrix composites – a review. Materials Today: Proceedings. 2020; DOI:10.1016/j.matpr.2020.10.604
  • Yu LI, Li QL, Dong LI, et al. Fabrication and characterization of stir casting AA6061—31% B4C composite. Trans Nonferrous Met Soc China. 2016;26(9):2304–2312.
  • Venkatesan S, Xavior MA. Tensile behavior of aluminum alloy (AA7050) metal matrix composite reinforced with graphene fabricated by stir and squeeze cast processes. Sci Technol Mater. 2018;30(2):74–85.
  • Kumar KR, Kiran K, Sreebalaji VS. Micro structural characteristics and mechanical behaviour of aluminium matrix composites reinforced with titanium carbide. J Alloys Compd. 2017;723:795–801.
  • Sankhla AM, Patel KM, Makhesana MA, et al. Effect of mixing method and particle size on hardness and compressive strength of aluminium based metal matrix composite prepared through powder metallurgy route. J Mater Res Technol. 2022;18:282–292. 2238-7854.
  • Hashim J, Looney L, Hashmi MSJ. Metal matrix composites: production by the stir casting method. J Mater Process Technol. 1999;92–93:1–7.
  • Dave H, Samvatsar K. A comprehensive review on aluminium syntactic foams obtained by dispersion fabrication methods. Mater Today Proc. 2021;47(14):4243–4248.
  • Rahimi B, Khosravi H, Haddad-sabzevar M. Microstructural characteristics and mechanical properties of Al-2024 alloy processed via a rheocasting route. Int J Miner Metall Mater. 2015;22(1):59–67.
  • Kumar KA, Natarajan S, Duraiselvam M, et al. Synthesis, characterization and mechanical behavior of Al 3003 – tiO 2 surface composites through friction stir processing. Mater Manuf Process. 2019;34(2):183–191.
  • Bauri R, Yadav D, Shyam Kumar CN, et al. Tungsten particle reinforced Al 5083 composite with high strength and ductility. Mater Sci Eng A. 2014;620:67–75.
  • Barati M, Abbasi M, Abedini M. The effects of friction stir processing and friction stir vibration processing on mechanical, wear and corrosion characteristics of Al6061/SiO2 surface composite. J Manuf Process. 2019;45:491–497.
  • Gilbert Kaufman J. “Properties of aluminum alloys; tensile, creep, and fatiguedata at high and low temperatures”. Geauga County, Ohio: ASM International; 2002.
  • Straffelini G, Bonollo F, Tiziani A. Influence of matrix hardness on the slidingbehavior of20 vol% Al2O3 −particulate reinforced 6061 Al metal matrix composites. Wear. 1997;211(2):192–197.
  • Veeresh Kumar GB, Swamy ARK, Ramesha A. Studies on properties of as-castAl6061-WC-Gr hybrid MMCs. J Compos Mater. 2012;46(17):2111–2122.
  • Dharmesh M. Patoliya and Sunil Sharma preparation and characterization of zirconium dioxide reinforced aluminum metal matrix composites. Int J Innov Res Sci Eng Technol. 2015;4:3315–3321.
  • Aruna K, Diwakar K, Bhargav Kumar K. Development and characterization of Al6061-ZrO2 reinforced metal matrix composites. Int J Adv Res Comput Sci Software Eng. 2018;8:270–275.
  • Girisha KB, Chittappa HC. Preparation, characterization and wear study of aluminium alloy (Al 356.1) reinforced with zirconium nano particles. Int J Innov Res Sci Eng Technol. 2013;2:3627–3637.
  • Perez-Bustamante R, Bolanos-Morales D, Bonilla-Martinez J, et al. Microstructural and hardness behavior of graphene-nanoplatelets/aluminium composites synthesized by mechanical alloying. J Alloys Compd. 2014;615:S578–82.
  • Jenix Rino J. Properties of Al6063 MMC reinforced with zircon sand and alumina. Iosr J Mech Civ Eng. 2013;5(5):72–77.
  • Ajay Kumar V, Rama Murty Raju P, Ramanaiah N, et al. Effect of ZrO2 content on the mechanical properties and microstructure of HAp/ZrO2 nanocomposites. Ceram Int. 2018;44(9):10345–10351.
  • Ravesh SK, Garg TK. Preparation and analysis for some mechanical property of aluminium based metal matrix composite reinforced with SiC and fly ash. Int J Eng Res Appl. 2012;2:727–731.
  • Alaneme KK, Ademilua BO, Bodunrin MO. Mechanical properties and corrosion behavior of aluminium hybrid composites reinforced with silicon carbide and bamboo leaf ash. Tribol Ind. 2013;35:25.
  • Katsina Christopher B, Reyazul Haque K. Rate of solidification of aluminium casting in varying wall thickness of cylindrical metallic moulds. Leonardo J Sci. 2014;25:19–30.
  • Malekan M, Naghdali S, Abrishami S, et al. Effect of cooling rate on the solidification characteristics and dendrite coherency point of ADC12 aluminum die casting alloy using thermal analysis. J Therm Anal. 2016;124(2):601–606.
  • Summerscales J, Singh Virk A. Wayne Hall, fibre area correction factors (FACF) for the extended rules-of-mixtures for natural fibre reinforced composites. Mater Today Proc. 2020;31(2):S318–S320. 2214-7853.
  • Martin A, Martinez MA, Llorca J. Wear of SiC-reinforced Al-matrix composites in the temperature range 20-200°C. Wear. 1996;193(2):169–179. ss, 1996.
  • Kumar A GBV, Pramod B R. Ch Guna Sekhar b, G.Pradeep Kumar b, T. Bhanu Murthy Investigation of physical, mechanical and tribological properties of Al6061–ZrO2 nano-composites,Heliyon, 5, 11. 2019. DOI: 10.1016/j.heliyon.2019.e02858
  • Sajjadi SA, Ezatpour HR, Beygi H. Microstructure and mechanical properties of Al- Al2O3 micro-nano composites fabricated by stir casting. Mater Sci Eng A. 2011;528(29–30):8765.
  • Ramesh CS, Keshavamurthy R, Channabasappa BH, et al. “Microstructure and mechanical properties of Ni–P coated Si3N4 reinforced Al6061 composites. Mater Sci Eng A. 2009;502(1–2):99.
  • Mazaheri Y, Meratian M, Emadi R, et al. Comparison of microstructural and mechanical properties of Al–TiC, Al–B4C and Al–TiC–B4C composites prepared by casting techniques. Mater Sci Eng A. 2013;560:278.
  • Miller WS, Humpherys FJ. Strengthening mechanisms in particulate metal matrix composites. Scripta Metall Mater. 1991;25(1):33–38.
  • Ganesh VV, Chawla N. Effect of particle orientation anisotropy on the tensile behavior of metal matrix composites: experiments and microstructure-based simulation. Mater Sci Eng A. 2005;391(1–2):342–353.
  • Arvid Kumar RN, Fabrication R. Microstructure and mechanical properties of boron carbide (B4Cp) reinforced aluminum metal matrix composites- A review, IOP Conf. Series Mater Sci Eng. 2018;377:012092.
  • Matvienko O, Daneyko O, Kovalevskaya T, et al. Investigation of stresses induced due to the mismatch of the coefficients of thermal expansion of the matrix and the strengthening particle in Aluminum-based composites. Metals. 2021;11(2):279. https://doi.org/10.3390/met11020279
  • Mummery PM, Derby B, Scruby CB. Acoustic emission from particulate reinforced metal matrix composites. Acta Metall. 1993;41(5):1431–1445.
  • Das K, Das K, Das K. Abrasive wear of zircon sand and alumina reinforced Al–4.5 wt% Cu alloy matrix composites—a comparative study. Compos Sci Technol. 2007;67(3–4):746–751.
  • Abdizadeh H, Baghchesara MA. Investigation on mechanical properties and fracture behavior of A356 aluminum alloy based ZrO2 particle reinforced metal-matrix composites. Ceram Int. 2013;39(2):2045–2050.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.