133
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of in-situ reaction time on the strength of AA5052/ZrAl3 metal matrix nano composites

ORCID Icon, &
Pages 263-274 | Accepted 14 Jun 2022, Published online: 22 Jun 2022

References

  • Samal P, Vundavilli PR, Meher A, et al. Recent progress in aluminum metal matrix composites: a review on processing, mechanical and wear properties. J Manuf Process. 2020;59:131–152.
  • Casati R, Vedani M. Metal matrix composites reinforced by nano-particles—A review. Metals (Basel). 2014;4:65–83.
  • Hu Z, Tong G, Lin D, et al. Graphene-reinforced metal matrix nanocomposites - A review. Mater Sci Technol. 2016;32:930–953.
  • Narasimha BG, Krishna VM, Xavior AM. A review on processing of particulate metal matrix composites and its properties. Int J Appl Eng Res. 2013;8:647–666.
  • Davis JR. Aluminium and aluminium alloys. Materials Park, OH: ASM International; 1993.
  • Bray J. Properties and selection: nonferrous alloys and special purpose materials. Materials Park, OH: ASM International; 1990.
  • Mozammil S, Karloopia J, Verma R, et al. Effect of varying TiB2 reinforcement and its ageing behaviour on tensile and hardness properties of in-situ Al-4.5%Cu-xTiB2 composite. J Alloys Compd. 2019;793:454–466.
  • Kaufman JG Introduction to aluminium alloys and tempers (Materials Park, OH: ASM International). 2000.
  • Dinaharan I, Ashok Kumar G, Vijay SJ, et al. Development of Al3Ti and Al3Zr intermetallic particulate reinforced aluminum alloy AA6061 in situ composites using friction stir processing. Mater Des. 2014;63:213–222.
  • Gao Q, Wu S, Lü S, et al. Preparation of in-situ 5 vol% TiB2 particulate reinforced Al-4.5Cu alloy matrix composites assisted by improved mechanical stirring process. Mater Des. 2016;94:79–86.
  • Reddy MP, Himyan MA, Ubaid F, et al. Enhancing thermal and mechanical response of aluminum using nanolength scale TiC ceramic reinforcement. Ceram Int. 2018;44:9247–9254.
  • Sujith SV, Mahapatra MM, Mulik RS. An investigation into fabrication and characterization of direct reaction synthesized Al-7079-TiC in situ metal matrix composites. Arch Civil Mech Eng. 2019;19(1):63–78.
  • Shorowordi KM, Laoui T, Haseeb ASMA, et al. Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study. J Mater Process Technol. 2003;142:738–743.
  • Ibrahim MF, Ammar HR, Samuel AM, et al. On the impact toughness of Al-15 vol.% B4C metal matrix composites. Compos B Eng. 2015;79:83–94.
  • Yuan L, Han J, Liu J, et al. Mechanical properties and tribological behavior of aluminum matrix composites reinforced with in-situ AlB2 particles. Tribol Int. 2016;98:41–47.
  • Kumar N, Gautam RK, Mohan S. In-situ development of ZrB2 particles and their effect on microstructure and mechanical properties of AA5052 metal-matrix composites. Mater Des. 2015;80:129–136.
  • Kumar SD, Ravichandran M, Jeevika A, et al. Effect of ZrB2 on microstructural, mechanical and corrosion behaviour of aluminium (AA7178) alloy matrix composite prepared by the stir casting route. Ceram Int. 2021;47:12951–12962.
  • Wang J, Yi D, Su X, et al. Properties of submicron AlN particulate reinforced aluminum matrix composite. Mater Des. 2009;30:78–81.
  • Fale S, Likhite A, Bhatt J. Nanoindentation studies of ex situ AlN/Al metal matrix nanocomposites. J Alloys Compd. 2015;615:S392–S396.
  • Venkateswarlu K, Saurabh S, Rajinikanth V, et al. Synthesis of TiN reinforced aluminium metal matrix composites through microwave sintering. J Mater Eng Perform. 2010;19:231–236.
  • Qu X, Wang F, Shi C, et al. In situ synthesis of a gamma-Al2O3 whisker reinforced aluminium matrix composite by cold pressing and sintering. Mater Sci Eng A. 2018;709:223–231.
  • Xu T, Li G, Xie M, et al. Microstructure and mechanical properties of in-situ nano γ-Al2O3p/A356 aluminum matrix composite. J Alloys Compd. 2019;787:72–85.
  • Boppana SB, Dayanand S, Anil Kumar M, et al. Synthesis and characterization of nano graphene and ZrO2 reinforced Al 6061 metal matrix composites. J Mater Res Technol. 2020;9:7354–7362.
  • Balakrishnan M, Dinaharan I, Palanivel R, et al. Effect of friction stir processing on microstructure and tensile behavior of AA6061/Al3Fe cast aluminum matrix composites. J Alloys Compd. 2019;785:531–541.
  • Gupta R, Daniel BSS. Strengthening mechanisms in Al3Zr-reinforced aluminum composite prepared by ultrasonic assisted casting. J Mater Eng Perform. 2021;30:2504–2513.
  • Qian J, Li J, Xiong J, et al. In situ synthesizing Al3Ni for fabrication of intermetallic-reinforced aluminum alloy composites by friction stir processing. Mater Sci Eng A. 2012;550:279–285.
  • Chao ZL, Zhang LC, Jiang LT, et al. Design, microstructure and high temperature properties of in-situ Al3Ti and nano-Al2O3 reinforced 2024Al matrix composites from Al-TiO2 system. J Alloys Compd. 2019;775:290–297.
  • Zhang J, Yin F, Jiang B, et al. A novel in situ (Al3Ni + Al3Ti)/Al composite inoculant and its effects on the microstructure, damping and mechanical properties of Zn–Al eutectoid alloy. Metall Mater Trans A. 2022;53(6):2099–2115.
  • Krishna MV, Narasimha GB, Rajesh N, et al. Optimization of influential parameters on mechanical behaviour of AlMg1 SiCu hybrid metal matrix composites using Taguchi integrated fuzzy approach. Mater Today Proc. 2015;2(4–5):1464–1468.
  • Zhang Jian. Wear behavior of Lanxide AI203/AI composite Wear. 1997. 215, 1–2;34–39.
  • Tjong SC. Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng. 2000;29(3–4):49–113.
  • Li P, Kandalova EG, Nikitin VI. In situ synthesis of Al–TiC in aluminum melt. Mater Lett. 2005;59(19–20):2545–2548.
  • Sahoo P, Koczak MJ. Microstructure-property relationships of in situ reacted TiC/AlCu metal matrix composites. Mater Sci Eng A. 1991;131(1):69–76.
  • Gungor MN, Roidt RM, Burke MG. Plasma deposition of particulate-reinforced metal matrix composites. Mater Sci Eng A. 1991;144(1–2):111–119.
  • Majumdar JD, Chandra BR, Nath AK, et al. In situ dispersion of titanium boride on aluminium by laser composite surfacing for improved wear resistance. Surf Coat Technol. 2006;201(3–4):1236–1242.
  • Kaveendran B, Wang GS, Huang LJ, et al. In situ (Al3Zr+Al2O3np)/2024Al metal matrix composite with novel reinforcement distributions fabricated by reaction hot pressing. J Alloys Compd. 2013;581:16–22.
  • Zhao Y-T, Zhang S-L, Chen G, et al. In situ (Al2O3+Al3Zr)np/Al nanocomposites synthesized by magneto-chemical melt reaction. Compos Sci Technol. 2008;68(6):1463–1470.
  • Gautam G, Mohan A. Effect of ZrB2 particles on the microstructure and mechanical properties of hybrid (ZrB2 + Al3Zr)/AA5052 insitu composites. J Alloys Compd. 2015;649:174–183.
  • Gudla VC, Rechendorff K, Balogh ZI, et al. In-situ TEM investigation of microstructural evolution in magnetron sputtered Al–Zr and Al–Zr–Si coatings during heat treatment. Mater Des. 2016;89:1071–1078.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.