405
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Effective cooling methods for Ti6Al4V CNC milling: a review

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 457-506 | Accepted 21 Jun 2022, Published online: 05 Jul 2022

References

  • Patil AS, Ingle SV, More YS, et al. Machining challenges in Ti-6Al-4V -A review. Int J Innov Eng Technol. Internet. 2015;5:6–23.
  • Pervaiz S, Rashid A, Deiab I, et al. Influence of tool materials on machinability of titanium- and nickel-based alloys: a review. Mater Manuf Process. 2014;29(3):219–252.
  • Kale A, Khanna N. A review on cryogenic machining of super alloys used in aerospace industry. Procedia Manuf. 2017;7:191–197.
  • Dhal AK, Panda A, Kumar R, et al. Different machining environments impact analysis for Ti-6Al-4V alloy (Grade 5) turning process: a scoping review. Mater Today Proc. [Internet]. 2021;44:2342–2347. Available from: https://linkinghub.elsevier.com/retrieve/pii/S221478532040149X
  • He J, Li D, Jiang W, et al. The martensitic transformation and mechanical properties of ti6al4v prepared via selective laser melting. Materials (Basel). [Internet]. 2019;12(2):321. Available from: http://www.mdpi.com/1996-1944/12/2/321
  • Motyka M, Kubiak K, Sieniawski J, et al. Phase transformations and characterization of α + β Titanium alloys. Compr Mater Process. [Internet]. 2014;2:7–36. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780080965321002028
  • Elmer JW, Palmer TA, Babu SS, et al. In situ observations of lattice expansion and transformation rates of α and β phases in Ti-6Al-4V. Mater Sci Eng A. 2005;391:104–113.
  • Khanna N, Shah P, de Lacalle LNL, et al. In pursuit of sustainable cutting fluid strategy for machining Ti-6Al-4V using life cycle analysis. Sustain Mater Technol. [Internet]. 2021;29 (e00301:1–10.
  • Ali MH, Balasubramanian R, Mohamed B, et al. Effects of coolants on improving machining parameters while machinability Titanium alloy (Ti-6Al-4V): a review. Appl Mech Mater. 2012;110–116:1657–1666.
  • Patil AS, Sunnapwar VK, Bhole KS, et al. Experimental investigation and fuzzy TOPSIS optimisation of Ti6Al4V finish milling. Adv Mater Process Technol. [Internet]. 2021;7:1–24. Available from: https://www.tandfonline.com/doi/full/10.1080/2374068X.2021.1971002
  • Klocke F, Döbbeler B, Lakner T. Influence of cooling nozzle orientation on the machinability of TiAl6V4 and 42CrMo4+QT in rough milling. Procedia CIRP. [Internet]. 2018;77:66–69.
  • Mia M, Dhar NR. Effects of duplex jets high-pressure coolant on machining temperature and machinability of Ti-6Al-4V superalloy. J Mater Process Technol. [Internet]. 2018;252:688–696.
  • Khatri A, Jahan MP. Investigating tool wear mechanisms in machining of Ti-6Al-4V in flood coolant, dry and MQL conditions. Procedia Manuf. [Internet]. 2018;26:434–445.
  • Purba UI, Ginting A, Nasution DY. A review: palm oil-based cutting liquid for MQL system feeders in hard machining application. IOP Conf Ser Mater Sci Eng. 2020;1003:012061.
  • Kim W-Y, Senguttuvan S, Kim SH, et al. Numerical study of flow and thermal characteristics in titanium alloy milling with hybrid nanofluid minimum quantity lubrication and cryogenic nitrogen cooling. Int J Heat Mass Transf. 2021;170:121005.
  • Al-Samarrai I Hybrid cooling/lubricating strategies for machining Ti-6Al-4V in CNC end milling. 2019;1–148. Available from: https://researchportal.bath.ac.uk/en/studentTheses/hybrid-coolinglubricating-strategies-for-machining-ti-6al-4v-in-c
  • Park KH, Suhaimi MA, Yang G-D-D, et al. Milling of titanium alloy with cryogenic cooling and minimum quantity lubrication (MQL). Int J Precis Eng Manuf. [Internet]. 2017;18:5–14. Available from: http://link.springer.com/10.1007/s12541-017-0001-z
  • Pimenov DY, Mia M, Gupta MK, et al. Improvement of machinability of Ti and its alloys using cooling-lubrication techniques: a review and future prospect. J Mater Res Technol. 2021;11:719–753.
  • Shah P, Khanna N, Chetan, et al. Comprehensive machining analysis to establish cryogenic LN2 and LCO2 as sustainable cooling and lubrication techniques. Tribol Int. 2020;148:1–15.
  • Grguraš D, Sterle L, Krajnik P, et al. A novel cryogenic machining concept based on a lubricated liquid carbon dioxide. Int J Mach Tools Manuf. 2019;145:1–6.
  • Gross D, Hanenkamp N. Energy efficiency assessment of cryogenic minimum quantity lubrication cooling for milling operations. Procedia CIRP. [Internet]. 2021;98:523–528.
  • Tahri C, Lequien P, Outeiro JC, et al. CFD simulation and optimize of LN2 flow inside channels used for cryogenic machining: application to milling of titanium alloy Ti-6Al-4V. Procedia CIRP. 2017;58:584–589.
  • Sen B, Mia M, Uttam GMK, et al. Eco-Friendly cutting fluids in minimum quantity lubrication assisted machining: a review on the perception of sustainable manufacturing. Int J Precis Eng Manuf Technol. [Internet]. 2021;8:249–280.
  • Karim MR, Tariq JB, Morshed SM, et al. Environmental, economical and technological analysis of MQL-Assisted machining of Al-Mg-Zr alloy using PCD tool. Sustainability. [Internet]. 2021;13:7321. Available from: https://www.mdpi.com/2071-1050/13/13/7321
  • Salem A, Hopkins C, Imad M, et al. Environmental analysis of sustainable and traditional cooling and lubrication strategies during machining processes. Sustainability. [Internet]. 2020;12:1–22. Available from: https://www.mdpi.com/2071-1050/12/20/8462
  • Inasaki I. Towards symbiotic machining processes. Int J Precis Eng Manuf. [Internet]. 2012;13:1053–1057. Available from: http://link.springer.com/10.1007/s12541-012-0137-9
  • Goldberg M. Improving productivity by using innovative metal cutting solutions with an emphasis on green machining. Int J Mach Mach Mater. [Internet]. 2012;12:117. Available from: http://www.inderscience.com/link.php?id=48561
  • Okafor AC. Cooling and machining strategies for high speed milling of titanium and nickel super alloys. High-Speed Mach [Internet]. Elsevier Inc. 2020;127–161. Available from: DOI: 10.1016/B978-0-12-815020-7/00005-9
  • Krolczyk GM, Maruda RW, Krolczyk JB, et al. Ecological trends in machining as a key factor in sustainable production – a review. J Clean Prod. [Internet]. 2019;218:601–615.
  • Sarikaya M, Gupta MK, Tomaz I, et al. Cooling techniques to improve the machinability and sustainability of light-weight alloys: a state-of-the-art review. J Manuf Process. Internet. 2021;62:179–201.
  • Boswell B, Islam MN. Sustainable cooling method for machining titanium alloy. IOP Conf Ser Mater Sci Eng. 2016;114(1):012021.
  • Shokrani A, Dhokia V, Newman ST. Energy conscious cryogenic machining of Ti-6Al-4V titanium alloy. Proc Inst Mech Eng Part B J Eng Manuf. [Internet]. 2018;232:1690–1706. Available from: http://journals.sagepub.com/doi/10.1177/0954405416668923
  • Joshi VA. Titanium alloys an atlas of structures and fracture features. Boca Raton: CRC Press, Taylor & Francis Group; 2006.
  • Sarma J, Kumar R, Sahoo AK, et al. Enhancement of material properties of titanium alloys through heat treatment process: a brief review. Mater Today Proc. Internet. 2020;23:561–564.
  • Lazoglu Selk I, and Maranchik J AM, et al. Machining of titanium alloys [Internet] Paulo Davim, J. First. In: First. Mater. Forming, Mach. Tribol. Berlin Heidelberg: Springer; 1968. First: http://link.springer.com/10.1007/978-3-662-43902-9
  • Nouari M, Makich H. On the physics of machining titanium alloys: interactions between cutting parameters, microstructure and tool wear. Metals (Basel). 2014;4:335–358.
  • Vigraman T, Ravindran D, Narayanasamy R. Effect of phase transformation and intermetallic compounds on the microstructure and tensile strength properties of diffusion-bonded joints between Ti–6Al–4V and AISI 304L. Mater Des. [Internet]. 2012;36:714–727.
  • Ducato A, Fratini L, and La CM, et al. An Automated Visual Inspection System for the Classification of the Phases of Ti-6Al-4V Titanium Alloy. [Internet]. In: Wilson R, Hancock E, Bors A Computer analysis of images and patterns , et al., editors Berlin Heidelberg: Springer; 2013; 8048:362–369. . Available from. In: http://link.springer.com/10.1007/978-3-642-40246-3
  • Majumdar T, Bazin T, and Massahud Carvalho Ribeiro E. Understanding the effects of PBF process parameter interplay on Ti-6Al-4V surface properties , et al. In: Riveiro Rodríguez A, editor. PLoS One.14; 2019:1–24 doi:10.1371/journal.pone.0221198
  • Shyha I, Gariani S, El-Sayed MA, et al. Analysis of microstructure and chip formation when machining Ti-6Al-4V. Metals (Basel). [Internet]. 2018;8:185. Available from: http://www.mdpi.com/2075-4701/8/3/185
  • Kumar R, Kumar Sahooa A, Satyanarayana K, et al. Some studies on cutting force and temperature in machining Ti-6AL-4V alloy using regression analysis and ANOVA. Int J Ind Eng Comput. 2013;4. 427–436.
  • Swain S, Panigrahi I, Sahoo AK, et al. An experimental investigation to augment the machinability characteristics during dry turning of Ti-6Al-4V alloy. Arab J Sci Eng. [Internet]. 2021; DOI:10.1007/s13369-021-06099-0.
  • Kumar R, Sahoo AK. Pulsating minimum quantity lubrication assisted high speed turning on bio-medical Ti-6Al-4V ELI alloy: an experimental investigation. Mech Ind. 2020;21:19–21.
  • Kar BC, Panda A, Kumar R, et al. Research trends in high speed milling of metal alloys: a short review. Mater Today Proc. 2019;26:2657–2662.
  • Joshi S. Dimensional inequalities in chip segments of titanium alloys. Eng Sci Technol Int J. [Internet]. 2018;21:238–244.
  • Niinomi M. Titanium alloys. Encycl Biomed Eng. 2019;1–3:213–224.
  • Kumar R, Pandey A, Panda A, et al. Analysis of wiper tool failure and surface roughness in turning of bio-compatible Ti-6Al-4V ELI alloy. J Fail Anal Prev. [Internet]. 2021;21:1403–1422.
  • Joshi S, Tewari A, Joshi S. Microstructural characterization of chip segmentation under different machining environments in orthogonal machining of Ti6Al4V. J Eng Mater Technol Trans ASME. 2015;137(1):011005.
  • Moussaoui K, Mousseigne M, Senatore J, et al. Influence of milling on surface integrity of Ti6Al4V—study of the metallurgical characteristics: microstructure and microhardness. Int J Adv Manuf Technol. 2013;67:1477–1489.
  • Patil S, Jadhav S, Kekade S, et al. The influence of cutting heat on the surface integrity during machining of titanium alloy Ti6Al4V. Procedia Manuf. [Internet]. 2016;5:857–869.
  • Pramanik A. Problems and solutions in machining of titanium alloys. Int J Adv Manuf Technol. 2014;70:919–928.
  • Yumak N, Aslantas K, Pekbey Y. Effect of cryogenic and aging treatments on low-energy impact behaviour of Ti–6Al–4V alloy. Trans Nonferrous Met Soc China. English Ed [Internet]. 2017;27:514–526.
  • Ahmed T, Rack HJ. Phase transformations during cooling in α + β titanium alloys. Mater Sci Eng A. 1998;243:206–211.
  • Dawood A, Arbuckle GK, Jahan MP. A comparative study on the machinability of Ti-6Al-4V using conventional flood coolant and sustainable dry machining. Int J Mach Mach Mater. [Internet]. 2015;17:507. Available from: http://www.inderscience.com/link.php?id=73721
  • Liu D, Zhang Y, Luo M, et al. Investigation of tool wear and chip morphology in dry trochoidal milling of titanium alloy Ti-6Al-4V. Materials (Basel). 2019;12:1–13.
  • Yang D, Liu Z. Surface topography analysis and cutting parameters optimization for peripheral milling titanium alloy Ti-6Al-4V. Int J Refract Met Hard Mater. [Internet]. 2015;51:192–200.
  • Liu ZQ, Chen M, An QL. Investigation of friction in end-milling of Ti-6Al-4V under different green cutting conditions. Int J Adv Manuf Technol. 2015;78:1181–1192.
  • Jawahir IS, Attia H, Biermann D, et al. Cryogenic manufacturing processes. CIRP Ann - Manuf Technol. CIRP annals. [Internet]. 2016;65:713–736.
  • Kondo E, Nishimura Y, Nakao M Effects of oil mist and air jet flushing on tool wear in milling of Ti6Al4V at high speed. Procedia CIRP. [Internet]. Elsevier B.V.; 2016; 95–98. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2212827116300956.
  • Revuru RS, Posinasetti NR, Vsn VR, et al. Application of cutting fluids in machining of titanium alloys—a review. Int J Adv Manuf Technol. [Internet]. 2017;91:2477–2498.
  • Haider J, Hashmi MSJ. Health and Environmental Impacts in Metal Machining Processes. Compr Mater Process. [Internet]. 8. Elsevier Ltd; 2014;7–33. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780080965321008049
  • Debnath S, Reddy MM, Yi QS. Environmental friendly cutting fluids and cooling techniques in machining: a review. J Clean Prod. [Internet]. 2014;83:33–47.
  • Singh G, Gupta MK, Hegab H, et al. Progress for sustainability in the mist assisted cooling techniques: a critical review. Int J Adv Manuf Technol. [Internet]. 2020;109:345–376. Available from: https://link.springer.com/10.1007/s00170-020-05529-x
  • Pušavec F, Grguraš D, Koch M, et al. Cooling capability of liquid nitrogen and carbon dioxide in cryogenic milling. CIRP Ann. [Internet]. 2019;68:73–76. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0007850619300174
  • Palanisamy S, Townsend D, Scherrer M, et al. High pressure coolant application in milling titanium. Mater Sci Forum. 2009;618(619):89–92.
  • Su Y, He N, Li L, et al. An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6Al-4V. Wear. 2006;261:760–766.
  • Bermingham MJ, Palanisamy S, Morr D, et al. Advantages of milling and drilling Ti-6Al-4V components with high-pressure coolant. Int J Adv Manuf Technol. 2014;72:77–88.
  • Blau P, Busch K, Dix M, et al. Flushing strategies for high performance, efficient and environmentally friendly cutting. Procedia CIRP. [Internet]. 2015;26:361–366.
  • Pramanik A, Littlefair G. Machining of titanium alloy (Ti-6Al-4V)-theory to application. Mach Sci Technol. 2015;19:1–49.
  • Sharma AK, Tiwari AK, Dixit AR. Effects of Minimum Quantity Lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: a comprehensive review. J Clean Prod. [Internet]. 2016;127:1–18.
  • Goindi GS, Sarkar P. Dry machining: a step towards sustainable machining – challenges and future directions. J Clean Prod. 2017;165:1557–1571.
  • Walker T. The MQL Handbook. Walker T editor Unist Inc [Internet]. 2013;1.0.3:1–64. Available from: https://unist.com/the-mql-handbook.html
  • Sharma VS, Singh G, Sorby K, et al. A review on minimum quantity lubrication for machining processes. Mater Manuf Process. [Internet]. 2015;30:935–953. Available from: http://www.tandfonline.com/doi/full/10.1080/10426914.2014.994759
  • Vazquez E, Gomar J, Ciurana J, et al. Analyzing effects of cooling and lubrication conditions in micromilling of Ti6Al4V. J Clean Prod. [Internet]. 2015;87:906–913.
  • Garcia U, Ribeiro MV. Ti6Al4V titanium alloy end milling with minimum quantity of fluid technique use. Mater Manuf Process. 2016;31:905–918.
  • Ofem NL. Effect of Ni-binder, PECS and MQL on face milling of Ti-6Al-4V. Mater Manuf Process. [Internet]. 2021;36:1807–1812.
  • Dong L, Li C, Bai X, et al. Analysis of the cooling performance of Ti–6Al–4V in minimum quantity lubricant milling with different nanoparticles. Int J Adv Manuf Technol. 2019;103:2197–2206.
  • Bai X, Li C, Dong L, et al. Experimental evaluation of the lubrication performances of different nanofluids for minimum quantity lubrication (MQL) in milling Ti-6Al-4V. Int J Adv Manuf Technol. 2019;101:2621–2632.
  • Narayanan SV, Benjamin DM, H MV, et al. A combined numerical and experimental investigation of minimum quantity lubrication applied to end milling of Ti6Al4V alloy. Mach Sci Technol. 2020;25:209–236.
  • Ge J, Chen G, Su Y, et al. Effect of cooling strategies on performance and mechanism of helical milling of CFRP/Ti-6Al-4 V stacks. Chin J Aeronaut. [Internet]. 2022;35:388–403.
  • Roushan A, Rao US, Patra K, et al. Performance evaluation of tool coatings and nanofluid MQL on the micro-machinability of Ti-6Al-4V. J Manuf Process. [Internet]. 2022;73:595–610. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1526612521008379
  • Jadhav PA, Deivanathan R. Numerical analysis of the effect of air pressure and oil flow rate on droplet size and tool temperature in MQL machining. Mater Today Proc. [Internet]. 2021;38:2499–2505.
  • Jamil M, Khan AM, Hegab H, et al. Milling of Ti–6Al–4V under hybrid Al2O3-MWCNT nanofluids considering energy consumption, surface quality, and tool wear: a sustainable machining. Int J Adv Manuf Technol. 2020;107:4141–4157.
  • Kumar Mishra S, Ghosh S, Aravindan S. Machining performance evaluation of Ti6Al4V alloy with laser textured tools under MQL and nano-MQL environments. J Manuf Process. [Internet]. 2020;53:174–189.
  • Lu T, Kudaravalli R, Georgiou G. cryogenic machining through the spindle and tool for improved machining process performance and sustainability: Pt. i, system design. Procedia Manuf. 2018;21:266–272.
  • Saha P, Narain R, Kumar R, et al. Status of cryogenic coolant application in various machining processes. Int J Energy a Clean Environ [Internet]. 2022; Available from: https://www.dl.begellhouse.com/journals/6d18a859536a7b02,forthcoming,38535.html
  • Sadik MI, Isakson S, Malakizadi A, et al. Influence of coolant flow rate on tool life and wear development in cryogenic and wet milling of Ti-6Al-4V. Procedia CIRP. 2016;46:91–94.
  • Shokrani A, Dhokia V, Newman ST. Investigation of the effects of cryogenic machining on surface integrity in CNC end milling of Ti-6Al-4V titanium alloy. J Manuf Process. 2016;21:172–179.
  • Suhaimi MA, Yang G-D-D, Park K-H-H, et al. Effect of cryogenic machining for titanium alloy based on indirect, internal and external spray system. Procedia Manuf. [Internet]. 2018;17:158–165.
  • Pittalà GM. A study of the effect of CO2 cryogenic coolant in end milling of Ti-6Al-4V. Procedia CIRP. [Internet]. 2018;77:445–448.
  • Wang F, Wang Y, Liu H. Tool wear behavior of thermal-mechanical effect for milling Ti-6Al-4V alloy in cryogenic. Int J Adv Manuf Technol. 2018;94:2077–2088.
  • Wang F, Hou B, Wang Y, et al. Diffusion thermodynamic behavior of milling Ti-6A1-4V alloy in liquid nitrogen cryogenic cooling. Int J Adv Manuf Technol. 2018;95:2783–2793.
  • Pereira O, González H, Calleja A, et al. Manufacturing of human knee by cryogenic machining: walking towards cleaner processes. Procedia Manuf. [Internet]. 2019;41:257–263.
  • Zhao W, Ren F, Iqbal A, et al. Effect of liquid nitrogen cooling on surface integrity in cryogenic milling of Ti-6Al-4 V titanium alloy. Int J Adv Manuf Technol. [Internet]. 2020;106:1497–1508. Available from: http://link.springer.com/10.1007/s00170-019-04721-y
  • Jamil M, Khan AM, Gupta MK, et al. Influence of CO2-snow and subzero MQL on thermal aspects in the machining of Ti-6Al-4V. Appl Therm Eng. [Internet]. 2020;177:115480.
  • Albertelli P, Mussi V, Strano M, et al. Experimental investigation of the effects of cryogenic cooling on tool life in Ti6Al4V milling. Int J Adv Manuf Technol. [Internet]. 2021;117:2149–2161. Available from: https://link.springer.com/10.1007/s00170-021-07161-9
  • Albertelli P, Monno M. Energy assessment of different cooling technologies in Ti-6Al-4V milling. Int J Adv Manuf Technol. 2021;112:3279–3306.
  • Iqbal A, Zhao G, Suhaimi H, et al. On coolant flow rate-cutting speed trade-off for sustainability in cryogenic milling of Ti–6Al–4V. Materials (Basel). 2021;14:1–17.
  • Ross NS, Sheeba PT, Jebaraj M, et al. Milling performance assessment of Ti-6Al-4V under CO 2 cooling utilizing coated AlCrN/TiAlN insert. Mater Manuf Process. [Internet]. 2022;37:327–341.
  • Lu T, Kudaravalli R, Georgiou G. Cryogenic machining through the spindle and tool for improved machining process performance and sustainability: Pt. II, sustainability performance study. Procedia Manuf. [Internet]. 2018;21:266–272.
  • Gajrani KK. Assessment of cryo-MQL environment for machining of Ti-6Al-4V. J Manuf Process. [Internet]. 2020;60:494–502.
  • Sharma AK, Tiwari AK, Dixit AR. Progress of nanofluid application in machining: a review. Mater Manuf Process. 2015;30:813–828.
  • Park K-H-H, Yang G-D-D, Suhaimi MA, et al. The effect of cryogenic cooling and minimum quantity lubrication on end milling of titanium alloy Ti-6Al-4V. J Mech Sci Technol. 2015;29:5121–5126.
  • Aslantas K, Çicek A, Ucun İ, et al. Performance evaluation of a hybrid cooling–lubrication system in micro-milling of Ti6Al4V alloy. Procedia CIRP. [Internet]. 2016;46:492–495. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2212827116301925
  • Shokrani A, Al-Samarrai I, Newman ST. Hybrid cryogenic MQL for improving tool life in machining of Ti-6Al-4V titanium alloy. J Manuf Process. [Internet]. 2019;43:229–243.
  • An Q, Cai C, Zou F, et al. Tool wear and machined surface characteristics in side milling Ti6Al4V under dry and supercritical CO2 with MQL conditions. Tribol Int. [Internet]. 2020 cited 2021 Aug 28;151 (10651):1–23. Available from: https://www.sciencedirect.com/science/article/pii/S0301679X20303431
  • Gross D, Blauhöfer M, Hanenkamp N. Milling of Ti6Al4V with carbon dioxide as carrier medium for minimum quantity lubrication with different oils. Procedia Manuf. [Internet]. 2020;43:439–446.
  • Bagherzadeh A, Kuram E, Budak E. Experimental evaluation of eco-friendly hybrid cooling methods in slot milling of titanium alloy. J Clean Prod. [Internet]. 2021;289:1–14.
  • Davis R, Singh A, Sabino RM, et al. Performance investigation of cryo-treated end mill on the mechanical and in vitro behavior of hybrid-lubri-coolant-milled Ti-6Al-4V alloy. J Manuf Process. [Internet]. 2021;71:472–488.
  • Jamil M, He N, Huang X, et al. Thermophysical, tribological, and machinability characteristics of newly developed sustainable hybrid lubri-coolants for milling Ti-6Al-4V. J Manuf Process. [Internet]. 2022;73:572–594. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1526612521007830
  • Adler DP, Hii WW-S, Michalek DJ, et al. Examining the role of cutting fluids in machining and efforts to address associated environmental/health concerns. Mach Sci Technol. [Internet]. 2006;10:23–58. Available from: http://www.tandfonline.com/doi/abs/10.1080/10910340500534282
  • Sharma R, Jha BK, Pahuja V. Impact of environmental friendly machining on machinability: a review. Mater Today Proc. [Internet]. 2021;46:10362–10367. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2214785320402159
  • Jawahir IS, Puleo DA, Schoop J. Cryogenic machining of biomedical implant materials for improved functional performance, life and sustainability. Procedia CIRP. 2016;46:7–14.
  • Osman KA, Ünver HÖ, Şeker U. Application of minimum quantity lubrication techniques in machining process of titanium alloy for sustainability: a review. Int J Adv Manuf Technol. 2019;100:2311–2332.
  • Shete H, Sohani M, Todkar A. Machining in high pressure coolant environment – a strategy to improve machining performance: a review. Int J Manuf Technol Manag. 2019;33:468–492.
  • Senthil Kumar A, Rahman M, Ng SL. Effect of high-pressure coolant on machining performance. Int J Adv Manuf Technol. 2002;20:83–91.
  • Gariani S, Shyha I, Inam F, et al. Experimental analysis of system parameters for minimum cutting fluid consumption when machining Ti-6Al-4V using a novel supply system. Int J Adv Manuf Technol. 2018;95:2795–2809.
  • Foltz G. Titanium & Metalworking Fluids. [Internet]. Cincinnati Ohio 45209; 2009. Available from: https://cdn.ymaws.com/titanium.org/resource/resmgr/2005_2009_papers/FoltzGreg_2009.pdf
  • VANS RE. Quaker chemical corporation U. Metalworking fluids (MWFs) for cutting and grinding: fundamentals and recent advances. In: Astakhov VP, Joksch S, editors. Metalwork fluids cut grind fundam recent adv. USA: Woodhead Publishing Limited; 2012. p. 1–413.
  • Co MM, Fluids GIF. CIMCOOL ® Technical report [Internet]. Cincinnati, Ohio 45209; Available from: https://www.cimcool.com/wp-content/uploads/tech-reports/machiningtitanium.pdf.
  • Naveed M, Arslan A, Javed HMA, et al. State-of-the-art and future perspectives of environmentally friendly machining using biodegradable cutting fluids. Energies. 2021;14:1–36.
  • Zheng X, Liu Z, Chen M, et al. Experimental study on micro-milling of Ti6Al4V with minimum quantity lubrication. Int J Nanomanuf. 2013;9:570–582.
  • Maruda RW, Krolczyk GM, Feldshtein E, et al. A study on droplets sizes, their distribution and heat exchange for minimum quantity cooling lubrication (MQCL). Int J Mach Tools Manuf. [Internet]. 2016;100:81–92.
  • Pervaiz S, Deiab I, Ibrahim EM, et al. A coupled FE and CFD approach to predict the cutting tool temperature profile in machining. Procedia CIRP. [Internet]. 2014;17:750–754.
  • Sun J, Wong YS, Rahman M, et al. Effects of coolant supply methods and cutting conditions on tool life in end milling titanium alloy. Mach Sci Technol. [Internet]. 2006;10:355–370. Available from: https://www.tandfonline.com/doi/full/10.1080/10910340600902181
  • Sharma S, Meena A. Microstructure attributes and tool wear mechanisms during high-speed machining of Ti-6Al-4V. J Manuf Process. 2020;50:345–365.
  • Hegab H, Umer U, Soliman M, et al. Effects of nano-cutting fluids on tool performance and chip morphology during machining Inconel 718. Int J Adv Manuf Technol. 2018;96:3449–3458.
  • Li B, Li C, Zhang Y, et al. Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil. J Clean Prod. [Internet]. 2017;154:1–11.
  • Eltaggaz A, Nouzil I, Deiab I. Machining Ti-6Al-4V Alloy Using Nano-Cutting Fluids: investigation and Analysis. J Manuf Mater Process. [Internet]. 2021;5 (42):1–14. Available from: https://www.mdpi.com/2504-4494/5/2/42
  • Hegab H, Abdelfattah W, Rahnamayan S, et al. Multi-objective optimization during machining Ti-6Al-4V using nano-fluids. Prog Can Mech Eng [Internet]. York University Libraries; 2018; 1–7. Available from: http://hdl.handle.net/10315/35212
  • Hegab H, Kishawy HA, Gadallah MH, et al. On machining of Ti-6Al-4V using multi-walled carbon nanotubes-based nano-fluid under minimum quantity lubrication. Int J Adv Manuf Technol. 2018;97:1593–1603.
  • Wang X, Li C, Zhang Y, et al. Vegetable oil-based nanofluid minimum quantity lubrication turning: academic review and perspectives. J Manuf Process. [Internet]. 2020;59:76–97.
  • Zakaria MF, Suhaimi MA, Sharif S, et al. The application of cold air and nano-MQL as cooling strategy in high speed milling of titanium alloy Ti-6Al-4V: a review. AIP Conf Proc. 2019;2129(1):020175.
  • Jamil M, Khan AM, Hegab H, et al. Effects of hybrid Al2O3-CNT nanofluids and cryogenic cooling on machining of Ti–6Al–4V. Int J Adv Manuf Technol. 2019;102:3895–3909.
  • Bag R, Panda A, Sahoo AK, et al. A brief study on effects of nano cutting fluids in hard turning of AISI 4340 steel. Mater Today Proc. [Internet]. 2019;26:3094–3099.
  • Tapoglou N, Lopez MIA, Cook I, et al. Investigation of the influence of CO2 cryogenic coolant application on tool wear. Procedia CIRP. [Internet]. 2017;63:745–749.
  • Astakhov VP, Joksch S, VANS RE, et al. Metalworking fluids (MWFs) for cutting and grinding: fundamentals and recent advances. In: Astakhov VP, Joksch S, editors. Metalwork fluids cut grind fundam recent adv. USA: Woodhead Publishing Limited; 2012. p. 1–413.
  • Shokrani A, Dhokia V, Newman ST. Comparative investigation on using cryogenic machining in CNC milling of Ti-6Al-4V titanium alloy. Mach Sci Technol. 2016;20:475–494.
  • Ducobu F, Rivière-Lorphèvre E, Filippi E. Experimental contribution to the study of the Ti6Al4V chip formation in orthogonal cutting on a milling machine. Int J Mater Form. [Internet]. 2015;8:455–468. Available from: http://link.springer.com/10.1007/s12289-014-1189-4
  • Roy S, Kumar R, Anurag, et al. A brief review on machining of Ti-6Al-4V under different cooling environments. IOP Conf Ser Mater Sci Eng. 2018;455(1):012101.
  • García-Martínez E, Miguel V, Martínez-martínez A, et al. Sustainable lubrication methods for the machining of titanium alloys: an overview. Materials (Basel). 2019;12:3852.
  • Sartori S, Ghiotti A, Bruschi S. Hybrid lubricating/cooling strategies to reduce the tool wear in finishing turning of difficult-to-cut alloys. Wear. [Internet]. 2017;376–377:107–114.
  • Gupta MK, Song Q, Liu Z, et al. Ecological, economical and technological perspectives based sustainability assessment in hybrid-cooling assisted machining of Ti-6Al-4 V alloy. Sustain Mater Technol. [Internet]. 2020;26:1–13.
  • Tanveer A, Marla D, Kapoor SG. A thermal model to predict tool temperature in machining of Ti-6Al-4V alloy with an atomization-based cutting fluid spray system. J Manuf Sci Eng Trans ASME. [Internet]. 2017;139:1–9. Available from: http://manufacturingscience.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jmsefk/936106/ on 05/07/2017
  • Lequien P, Poulachon G, Outeiro JC, et al. Hybrid experimental/modelling methodology for identifying the convective heat transfer coefficient in cryogenic assisted machining. Appl Therm Eng. [Internet]. 2018;128:500–507.
  • Raghavendra S, Sathyanarayana PS, SK S, et al. High speed machining of titanium Ti 6Al4V alloy components: study and optimisation of cutting parameters using RSM. Adv Mater Process Technol. 2020;00:1–14.
  • Nithyanandam J, Das SL, Palanikumar K. Influence of cutting parameters in machining of titanium alloy. Indian J Sci Technol. 2015;8(S8):556
  • Gupta K, Laubscher RF. Sustainable machining of titanium alloys: a critical review. Proc Inst Mech Eng Part B J Eng Manuf. 2017;231(14):2543–2560.
  • Khan AM, Jamil M, Mia M, et al. Sustainability-based performance evaluation of hybrid nanofluid assisted machining: sustainability assessment of hybrid nanofluid assisted machining. J Clean Prod. [Internet]. 2020;257:120541.
  • Ross NS, Mia M, Anwar S, et al. A hybrid approach of cooling lubrication for sustainable and optimized machining of Ni-based industrial alloy. J Clean Prod. [Internet]. 2021;321:1–18.
  • Mark Benjamin D, Sabarish VN, Hariharan MV, et al. On the benefits of sub-zero air supplemented minimum quantity lubrication systems: an experimental and mechanistic investigation on end milling of Ti-6-Al-4-V alloy. Tribol Int. [Internet]. 2018;119:464–473.
  • Masood I. Sustainable machining for titanium alloy Ti-6Al-4V. Sustain mach titan alloy Ti-6Al-4V. IntechOpen. [Internet].; 2019; 1–15. Available from: https://www.intechopen.com/online-first/sustainable-machining-for-titanium-alloy-ti-6al-4v
  • Hegab H, Darras B, Kishawy HA. Sustainability assessment of machining with nano-cutting fluids. Procedia Manuf. [Internet]. 2018;26:245–254.
  • Cui X, Li C, Ding W, et al. Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant: from mechanisms to application. Chin J Aeronaut. [Internet]. 2021;34(1):1–29. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1000936121002880
  • Wang F, Wang Y. Cleaner milling on Ti-6Al-4V alloy cooled by liquid nitrogen: external spray and inner injection. Int J Adv Manuf Technol. [Internet]. 2021;112(3–4):1193–1206. Available from: http://link.springer.com/10.1007/s00170-020-06440-1
  • Seid Ahmed Y, Ryon A. Tribological performance of a hybrid CryoMQL system on Ti6Al4V milling. Int J Adv Manuf Technol. [Internet]. 2022;120(11–12):8185–8199. Available from: https://link.springer.com/10.1007/s00170-022-09249-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.