267
Views
3
CrossRef citations to date
0
Altmetric
Review Article

A state-of-the-art review on magnesium-based composite materials

&
Pages 760-778 | Accepted 28 Jun 2022, Published online: 07 Jul 2022

References

  • Turan ME, Sun Y, Akgul Y. Mechanical, tribological and corrosion properties of fullerene reinforced magnesium matrix composites fabricated by semi powder metallurgy. J Alloys Compd. 2018;740:1149–1158.
  • Turan ME, Sun Y, Aydin F, et al. Effects of carbonaceous reinforcements on microstructure and corrosion properties of magnesium matrix composites. Mater Chem Phys. 2018;218(July):182–188.
  • Kumar DS, Sasanka CT, Ravindra K, et al. Magnesium and its alloys in automotive applications – a review. Am. J. Mater. Sci. Technol. 2015;4(1):12–30.
  • Li S, Qi L, Zhang T, et al. Evolution of interfacial microstructures and mechanical properties of Cf/AZ91 composite during heat treatment. Vacuum. 2017;145:245–250.
  • Hassan HLA. Effects ofparticulatevolumefractiononcyclicstressresponse and fatiguelifeofAZ91Dmagnesiumalloymetalmatrixcomposites. Mater. Sci. Eng. C. 2014. 600 ;188–194.
  • Zhang HX, Guo SF, and Yan ZF, et al. Rapid determination for fatigue parameters of AZ31B magnesium alloy based on evolution of temperature under high cyclic fatigue. Mater Sci Technol. 2014;30(14):1820–1825.
  • Qi L, Ju L, Zhou J, et al. Tensile and fatigue behavior of carbon fiber reinforced magnesium composite fabricated by liquid-solid extrusion following vacuum pressure infiltration. J Alloys Compd. 2017;721:55–63.
  • “Properties of magnesium” Accessed 20 April 2022 https://www.ga.gov.au/education/classroom-resources/minerals-energy/australian-mineral-facts/magnesium
  • Pond RC, Bacon DJ, Serra A. Computer simulation of the structure and mobility of twinning dislocations in H.C.P. metals. Acta Metall. Mater. 1991;39(7):1469–1480.
  • Rashad M, Pan F, Tang A, et al. Development of magnesium-graphene nanoplatelets composite. J Compos Mater. 2015;49(3):285–293.
  • Deepan M, Pandey C, Saini N, et al. Estimation of strength and wear properties of Mg/SiC nanocomposite fabricated through FSP route. J Brazilian Soc Mech Sci Eng. 2017;39(11):4613–4622.
  • “Magnesium alloys properties”. Accessed 20 April 2022 https://www.lenntech.com/periodic/elements/mg.htm
  • Yuan G, You G, Bai S, et al. Effects of heat treatment on the thermal properties of AZ91D magnesium alloys in different casting processes. J Alloys Compd. 2018;766:410–416.
  • Nafar Dastgerdi J, Marquis G, Sankaranarayanan S, et al. Fatigue crack growth behavior of amorphous particulate reinforced composites. Compos Struct. 2016;153:782–790.
  • Saikrishna N, Reddy GPK, Munirathinam B, et al. An investigation on the hardness and corrosion behavior of MWCNT/Mg composites and grain refined Mg. J. Magnes. Alloy. 2018;6(1):83–89.
  • Turan ME, Sun Y, Akgul Y. Improved wear properties of magnesium matrix composite with the addition of fullerene using semi powder metallurgy. Fuller. Nanotub. Carbon Nanostr. 2018;26(2):130–136.
  • Ferrando WA. Review of corrosion and corrosion control of magnesium alloys and composites. J. Mater. Eng. 1989;11(4):299–313.
  • Liu C, Zheng H, Gu X, et al. Effect of severe shot peening on corrosion behavior of AZ31 and AZ91 magnesium alloys. J Alloys Compd. 2019;770:500–506.
  • Preciado M, Bravo PM, Cardenas D. Influence of porosity in the fatigue behavior of the high-pressure die-casting AZ91 magnesium alloys. J. Eng. Mater. Technol. Trans. ASME. 2016;138(4):1–5.
  • Karr U, Schönbauer BM, Mayer H. Near-threshold fatigue crack growth properties of wrought magnesium alloy AZ61 in ambient air, dry air, and vacuum. Fatigue Fract. Eng. Mater. Struct. 2018;41(9):1938–1947.
  • Xu Y, Chen C, Jia J, et al. Characteristics of the hot workability of an AZ91D magnesium alloy using 3D processing maps. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2018;49(6):3470–3487.
  • Xiao P, Gao Y, Xu F, et al. Tribological behavior of in-situ nanosized TiB2 particles reinforced AZ91 matrix composite. Tribol Int. 2018;128(July):130–139.
  • Selvamani ST, Premkumar S, Vigneshwar M, et al. Influence of carbon nano tubes on mechanical, metallurgical and tribological behavior of magnesium nanocomposites. J. Magnes. Alloy. 2017;5(3):326–335.
  • Kelen F, Gavgali M, Aydogmus T. Microstructure and mechanical properties of a novel TiNi particulate reinforced AZ91 metal matrix composite. Mater Lett. 2018;233:12–15.
  • Zhou M, Qu X, Ren L, et al. The effects of carbon nanotubes on the mechanical and wear properties of AZ31 alloy. Materials (Basel). 2017;10(12):1385.
  • Lee JU, Kim S-H, Jo W-K, et al. Grain-refined AZ92 alloy with superior strength and ductility. Met Mater Int. 2018;24(4):730–737.
  • Huang SJ, Ali AN. Effects of heat treatment on the microstructure and microplastic deformation behavior of SiC particles reinforced AZ61 magnesium metal matrix composite. Mater Sci Eng A. 2018;711(August):670–682.
  • “Properties of AZ61 alloy” Accessed 20 April 2022 https://www.azom.com/article.aspx?ArticleID=6708
  • Zapl J, Trojanová Z, and Doležal P, et al. Elastic and plastic behavior of the QE22 magnesium alloy reinforced with short saffil fibers and SiC particles. Metals (Basel). 2018;8(2):133.
  • Da Silva EP, Batista LF, Callegari B, et al. Solution and ageing heat treatments of zk60 magnesium alloys with rare earth additions produced by semi-solid casting. Mater Res. 2014;17(6):1507–1512.
  • Du X, Du W, Wang Z, et al. Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composites. Mater Sci Eng A. 2018;711:633–642.
  • Meher A, Mahapatra MM, Samal P, et al. Study on effect of TiB2 reinforcement on the microstructural and mechanical properties of magnesium RZ5 alloy based metal matrix composites. J. Magnes. Alloy. 2020;8(3):780–792.
  • Meher A, Mahapatra MM, Samal P, et al. Abrasive wear behaviour of tib2 reinforced in-situ synthesized magnesium RZ5 alloy based metal matrix composites. Met Mater Int. 2021;27(9):3652–3665.
  • Bemanifar S, Rajabi M, Hosseinipour SJ. Microstructural characterization of Mg-SiC nanocomposite powders fabricated by high energy mechanical milling. Silicon. 2017;9(6):823–827.
  • Soorya Prakash K, Balasundar P, Nagaraja S, et al. Mechanical and wear behaviour of Mg–SiC–Gr hybrid composites. J. Magnes. Alloy. 2016;4(3):197–206.
  • Liang J, Li H, Qi L, et al. Fabrication and mechanical properties of CNTs/Mg composites prepared by combining friction stir processing and ultrasonic assisted extrusion. J Alloys Compd. 2017;728:282–288.
  • Nguyen QB, Sim YHM, Gupta M, et al. Tribology characteristics of magnesium alloy AZ31B and its composites. Tribol Int. 2015;82(PB):464–471.
  • Shaat M, Fathy A, Wagih A. Correlation between grain boundary evolution and mechanical properties of ultrafine-grained metals. Mech Mater. 2020;143:103321.
  • Abd-Elwahed MS, Ibrahim AF, Reda MM. Effects of ZrO2 nanoparticle content on microstructure and wear behavior of titanium matrix composite. J Mater Res Technol. 2020;9(4):8528–8534.
  • Sadoun AM, Meselhy AF, Deabs AW. Improved strength and ductility of friction stir tailor-welded blanks of base metal AA2024 reinforced with interlayer strip of AA7075. Results Phys. 2020;16:102911.
  • Sadoun AM, Wagih A, Fathy A, et al. Effect of tool pin side area ratio on temperature distribution in friction stir welding. Results Phys. 2019;15:102814.
  • Han GQ, Shen JH, Ye XX, et al. The influence of CNTs on the microstructure and ductility of CNT/Mg composites. Mater Lett. 2016;181:300–304.
  • Chen LY, Xu J-Q, Choi H, et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature. 2015;528(7583):539–543.
  • Arab M, Marashi SPH. Graphene Nanoplatelet (GNP)-incorporated AZ31 magnesium nanocomposite: microstructural, mechanical and tribological properties. Tribol Lett. 2018;66(4):0.
  • Selvam B, Marimuthu P, Narayanasamy R, et al. Effect of temperature and strain rate on compressive response of extruded magnesium nano-composite. J. Magnes. Alloy. 2015;3(3):224–230.
  • Xu H, Li Q. Effect of carbon nanofiber concentration on mechanical properties of porous magnesium composites: experimental and theoretical analysis. Mater Sci Eng A. 2017;706:249–255.
  • Turan ME, Sun Y, Aydın F, et al. Influence of multi-wall carbon nanotube content on dry and corrosive wear performances of pure magnesium. J Compos Mater. 2018;52(23):3127–3135.
  • Hong Yuan Q, Hua Zhou G, Liao L, et al. Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets. Carbon N Y. 2018;127:177–186.
  • Küçük Ö, Elfarah TTK, Islak S, et al. Optimization by using Taguchi method of the production of magnesium-matrix carbide reinforced composites by powder metallurgy method. Metals (Basel). 2017;7(9):1–12.
  • Ghali E. Corrosion and protection of magnesium alloys. Mater Sci Forum. 2000;350:261–272.
  • Sadoun E-KAM, Mohammed MM, Fathy A, et al. Effect of Al2O3 addition on hardness and wear behavior of Cu–Al2O3 electro-less coated Ag nanocomposite. J Mater Res Technol. 2020;9(3):5024–5033.
  • Barakat E-NWS, Wagih A, Omyma A, et al. Effect of Al2O3 nanoparticles content and compaction temperature on properties of Al–Al2O3 coated Cu nanocomposites. Compos B Eng. 2019;175:107140.
  • Wagih A, Fathy A, Sebaey TA. Experimental investigation on the compressibility of Al/Al2O3 nanocomposites. Int J Mater Prod Technol. 2016;52(3–4):312–332.
  • Sadoun AM, Mohammed MM, Elsayed EM, et al. Effect of nano Al2O3 coated Ag addition on the corrosion resistance and electrochemical behavior of Cu-Al2O3 nanocomposites. J Mater Res Technol. 2020;9(3):4485–4493.
  • Sadoun AM, Najjar IMR, Abd-Elwahed MS, et al. Experimental study on properties of Al–Al2O3 nanocomposite hybridized by graphene nanosheets. J Mater Res Technol. 2020;9(6):14708–14717.
  • Abbasi M, Bagheri B, Dadaei M, et al. The effect of FSP on mechanical, tribological, and corrosion behavior of composite layer developed on magnesium AZ91 alloy surface. Int J Adv Manuf Technol. 2015;77(9–12):2051–2058.
  • Zhao W, Huang SJ, and Wu YJ, et al. Particle size and particle percentage effect of AZ61/SiCp magnesium matrix micro- and nano-composites on their mechanical properties due to extrusion and subsequent annealing. Metals (Basel) 2017 . 7(8):2017.
  • Anantharaman H, Shunmugasamy VC, Strbik OM, et al. Dynamic properties of silicon carbide hollow particle filled magnesium alloy (AZ91D) matrix syntactic foams. Int J Impact Eng. 2015;82:14–24.
  • Kumar SP, Selvamani ST, Vigneshwar M, et al. Tensile, microhardness, and microstructural analysis on Mg-CNT nano composites. Mater Today Proc. 2018;5(2):7882–7888.
  • Rashad M, Pan F, Asif M. Exploring mechanical behavior of Mg-6Zn alloy reinforced with graphene nanoplatelets. Mater Sci Eng A. 2016;649:263–269.
  • Rashad M, Pan F, Zhang J, et al. Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy. J Alloys Compd. 2015;646:223–232.
  • Kandemir S. Development of graphene nanoplatelet-reinforced AZ91 magnesium alloy by solidification processing. J Mater Eng Perform. 2018;27(6):3014–3023.
  • Chen Q, Meng Y, Yi YS, et al. Microstructure and mechanical properties of cup-shaped parts of 15% SiCpreinforced AZ91 magnesium matrix composite processed by thixoforging. J Alloys Compd. 2019;774:93–110.
  • Zhang X, Deng KK, Li WJ, et al. Microstructure and mechanical properties of Mg-Al-Ca alloy influenced by SiCp size. Mater Sci Eng A. 2015;647:15–27.
  • Cho DH, Nam JH, Lee BW, et al. Thermal expansion properties of carbon nanotube/silicon carbide particle-reinforced magnesium composites fabricated by squeeze infiltration. Met Mater Int. 2016;22(2):332–339.
  • Girish BM, Satish BM, Sarapure S, et al. Wear behavior of magnesium alloy az91 hybrid composite materials. Tribol. Trans. 2015;58(3):481–489.
  • Girish BM, Satish BM, Sarapure S, et al. Optimization of wear behavior of magnesium alloy AZ91 hybrid composites using Taguchi experimental design. Metall Mater Trans A Phys Metall Mater Sci. 2016;47(6):3193–3200.
  • M.v A, B.k S, Budan A. Fatigue life estimation of hybrid aluminium matrix composites. Int. J. Des. Manuf. Technol. 2008;2(1):14–21.
  • Zhang L, Wang Q, Liao W, et al. Effects of cyclic extrusion and compression on the microstructure and mechanical properties of AZ91D magnesium composites reinforced by SiC nanoparticles. Mater Charact. 2017;126:17–27.
  • Rashad M, Pan F, Asif M. Room temperature mechanical properties of Mg-Cu-Al alloys synthesized using powder metallurgy method. Mater Sci Eng A. 2015;644:129–136.
  • Bhadouria N, Kumar P, Thakur L, et al. A study on micro-hardness and tribological behaviour of nano-WC–Co–Cr/multi-walled carbon nanotubes reinforced AZ91D magnesium matrix surface composites. Trans. Indian Inst. Met. 2017;70(9):2477–2483.
  • Rashad M, Pan FS, Asif M, et al., (United Kingdom). Improved mechanical properties of magnesium-graphene composites with copper-graphene hybrids. Mater Sci Technol. 2015;31(12):1452–1461.
  • Wang Y, Jiang L, Chen G, et al. Characterization of the reaction products and precipitates at the interface of carbon fiber reinforced magnesium-gadolinium composite. Mater Charact. 2016;113:232–238.
  • Fida Hassan S, Al-Aqeeli N, Gasem ZM, et al. Magnesium nanocomposite: increasing copperisation effect on high temperature tensile properties. Powder Metall. 2016;59(1):66–72.
  • Hassan SF, Al-Qutub AM, Tun KS, et al. Study of wear mechanisms of a novel magnesium based hybrid nanocomposite. J Tribol. 2015;137(1):1–4.
  • Fida Hassan S, Al-Qutub AM, Zabiullah S, et al. Effect of increasingly metallized hybrid reinforcement on the wear mechanisms of magnesium nanocomposite. Bull Mater Sci. 2016;39(4):1101–1107.
  • Yu D, Zhang D, Sun J, et al. High cycle fatigue behavior of extruded and double-aged Mg-6Zn-1Mn alloy. Mater Sci Eng A. 2016;662:1–8.
  • Yu D, Zhang D, Luo Y, et al. Microstructure evolution during high cycle fatigue in Mg-6Zn-1Mn alloy. Mater Sci Eng A. 2016;658:99–108.
  • Aatthisugan I, Razal Rose A, Selwyn Jebadurai D. Mechanical and wear behaviour of AZ91D magnesium matrix hybrid composite reinforced with boron carbide and graphite. J. Magnes. Alloy. 2017;5(1):20–25.
  • Li H, Cheng L, Sun X, et al. Fabrication and properties of magnesium matrix composite reinforced by urchin-like carbon nanotube-alumina in situ composite structure. J Alloys Compd. 2018;746:320–327.
  • Banerjee S, Poria S, and Sutradhar G, et al. Understanding fabrication and properties of magnesium matrix nanocomposites.In: Sahoo, S. (eds) Recent Advances in Layered Materials and Structures. Materials Horizons: From Nature to Nano materials. Springer, Singapore. 2021;229–252.https://doi.org/10.1007/978-981-33-4550-8_9
  • Gungor A, Incesu A. Effects of alloying elements and thermomechanical process on the mechanical and corrosion properties of biodegradable Mg alloys. J. Magnes. Alloy. 2021;9(1):241–253.
  • Packia Antony Amalan A, Sivaram NM, Bavatharani C, et al. A study on the effect of ageing heat treatment on hardness, tensile and corrosion behaviour of stir-cast AZ91D–5SiC–1Gr hybrid magnesium composite. Int. J. Metal Casting. 2022;16(2):973–986.
  • Isaza Merino CA, Ledezma Sillas JE, Meza JM, et al. Metal matrix composites reinforced with carbon nanotubes by an alternative technique. J Alloys Compd. 2017;707:257–263.
  • Nie KB, Wang XJ, Deng KK, et al. Magnesium matrix composite reinforced by nanoparticles – a review. J. Magnes. Alloy. 2021;9(1):57–77.
  • Dorri Moghadam A, Omrani E, Menezes PL, et al. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene - A review. Compos B Eng. 2015;77:402–420.
  • Liu J, Suryanarayana C, Zhang M, et al. Magnesium nanocomposites reinforced with a high volume fraction of SiC particulates. Int J Mater Res. 2017;108(10):848–856.
  • Akbaripanah F, Sabbaghian M, Fakhar N, et al. Influence of high pressure torsion on microstructure evolution and mechanical properties of AZ80/SiC magnesium matrix composites. Mater Sci Eng A. 2021;826(June):141916.
  • Sadooghi A, Rahmani K. Experimental study on mechanical and tribology behaviors of Mg-SiC nano/micro composite produced by friction stir process. J Mech Sci Technol. 2021;35(3):1121–1127.
  • Abazari S, Shamsipur A, Bakhsheshi-Rad HR, et al. Carbon nanotubes (CNTs)-reinforced magnesium-based matrix composites: a comprehensive review. Materials (Basel). 2020;13(19):1–38.
  • Rashad M, Pan F, Hu H, et al. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets. Mater Sci Eng A. 2015;630:36–44.
  • Say Y, Guler O, Dikici B. Carbon nanotube (CNT) reinforced magnesium matrix composites: the effect of CNT ratio on their mechanical properties and corrosion resistance. Mater Sci Eng A. 2020;798:139636.
  • Hou J, Du W, Parande G, et al. Significantly enhancing the strength + ductility combination of Mg-9Al alloy using multi-walled carbon nanotubes. J Alloys Compd. 2019;790:974–982.
  • Shahin M, Munir K, Wen M, et al. Microstructure, mechanical and corrosion properties of hot-pressed graphene nanoplatelets-reinforced Mg matrix nanocomposites for biomedical applications. J Alloys Compd. 2021;887:161379.
  • Sun Y, Cevik E, Turen Y, et al. Influence of GNPs and B4C reinforcements on mechanical, thermal and wear properties of magnesium matrix composite produced by powder metallurgy. J Compos Mater. 2021;55(26):3881–3891.
  • Du X, Du W, Wang Z, et al. Simultaneously improved mechanical and thermal properties of Mg-Zn-Zr alloy reinforced by ultra-low content of graphene nanoplatelets. Appl Surf Sci. 2020;536(April):147791. 2021.
  • Ezatpour HR, Parizi MT, Ebrahimi GR. The effects and improvements of GNPs+CNTs on the mechanical properties and microstructure of AZ80 matrix composite. Int. J. Light. Mater. Manuf. 2021;4(3):323–338.
  • Yuan QH, Liao L, Zhou GH, et al. ZM1 magnesium alloy reinforced by carbon nanotubes using an improved casting process. Rare Met. 2021;40(5):1275–1283.
  • Huo WT, Lin X, Yu S, et al. Corrosion behavior and cytocompatibility of nano-grained AZ31 Mg alloy. J Mater Sci. 2019;54(5):4409–4422.
  • Bommala VK, Krishna MG, Rao CT. Magnesium matrix composites for biomedical applications: a review. J. Magnes. Alloy. 2019;7(1):72–79.
  • Kuśnierczyk K, Basista M. Recent advances in research on magnesium alloys and magnesium-calcium phosphate composites as biodegradable implant materials. J Biomater Appl. 2017;31(6):878–900.
  • Saranu R, Chanamala R, and Putti SR. Corrosion and tribological behavior of magnesium metal matrix hybrid composites-A review. AIP Conf Proc. 2020;2259(September): 020018.
  • Sagar P, Handa A. A comprehensive review of recent progress in fabrication of magnesium base composites by friction stir processing technique—A review. AIMS Mater Sci. 2020;7(5):684–704.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.