200
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Review of cooling techniques used in metal cutting processes

ORCID Icon &
Pages 1137-1182 | Accepted 30 Jul 2022, Published online: 27 Oct 2022

References

  • Shokrani A, Dhokia V, Newman ST. Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. Int J Mach Tools Manuf. 2012;57:83–101.
  • Haider J, Hashmi MSJ. Health and environmental impacts in metal machining processes, comprehensive materials processing. Elsevier; 2014. doi:10.1016/B978-0-08-096532-1.00804-9.
  • Byers JP. Metalworking Fluids edited by. 2nd ed. LLC Boca Raton FL: Taylor & Francis Group; 2006. p. 33487–2742.
  • Sampaio, M.A., Machado, Á.R., Laurindo, C.A.H., Torres, R.D., Amorim, F.L. Influence of minimum quantity of lubrication (MQL) when turning hardened SAE 1045 steel: a comparison with dry machining. Int J Adv Manuf Technol. 2018;98:959–968.
  • Khan MA, Jaffery SHI, Khan M, et al. Multi-objective optimization of turning titanium-based alloy Ti-6Al-4V under dry, wet, and cryogenic conditions using gray relational analysis (GRA). Int J Adv Manuf Technol. 2020;106:3897–3911.
  • Kishawy HA, Hosseini A, Principles B. Machining difficult-to-cut materials. In: Springer nature Switzerland AG, gewerbestrasse. Vol. 11. Cham Switzerland; 2019. p. 6330.
  • Gupta MK, Sood PK, Singh G, et al. Sustainable machining of aerospace material – ti (grade-2) alloy: modeling and optimization. J Clean Prod. 2017;147:614–627.
  • Sharma A, Singh RC, Singari RM. Effect of direct LN2 single jet supply during turning of AISI D3 steel alloy using an optimization technique. Mater Res Express. 2019;6:96548.
  • Singh P, Padhy CP. Influence of nano (h-BN) cutting fluid on machinability of Inconel 625. J Phys Conf Ser. 2019;1355:012033.
  • Sarikaya M, Güllü A. Multi-response optimization of minimum quantity lubrication parameters using Taguchi-based grey relational analysis in turning of difficult-to-cut alloy Haynes 25. J Clean Prod. 2015;91:347–357.
  • Chatha SS, Pal A, Singh T. Performance evaluation of aluminium 6063 drilling under the influence of nanofluid minimum quantity lubrication. J Clean Prod. 2016;137:537–545.
  • Dhar NR, Khan MMA. Effects of minimum quantity lubrication (MQL) by vegetable oil-based cutting fluid on machinability of AISI 9310 steel. Int J Mach Mach Mater. 2010;7:17–38.
  • Debnath S, Reddy MM, Yi QS. Environmental friendly cutting fluids and cooling techniques in machining: a review. J Clean Prod. 2014;83:33–47.
  • Singh R, Bajpai V. Handbook of manufacturing engineering and technology. 2013. DOI:10.1007/978-1-4471-4976-7.
  • Benedicto E, Carou D, Rubio EM. Technical, economic and environmental review of the lubrication/cooling systems used in machining processes. Procedia Eng. 2017;184:99–116.
  • Krolczyk GM, Maruda RW, Krolczyk JB, et al. Ecological trends in machining as a key factor in sustainable production – a review. J Clean Prod. 2019;218:601–615.
  • Criado V, Díaz-Álvarez J, Cantero JL, et al. Study of the performance of PCBN and carbide tools in finishing machining of Inconel 718 with cutting fluid at conventional pressures. Procedia CIRP. 2018;77:634–637.
  • Vishnu AV, Kumar PJ, Ramana MV. Comparison among dry, flooded and MQL conditions in machining of en 353 steel alloys-an experimental investigation. Mater Today Proc. 2018;5:24954–24962.
  • Ezugwu EO, Bonney J. Finish machining of nickel-base inconel 718 alloy with coated carbide tool under conventional and high-pressure coolant supplies. Tribol Trans. 2005;48:76–81.
  • Ezugwu EO, Bonney J, Da Silva RB, et al. Surface integrity of finished turned Ti-6Al-4V alloy with PCD tools using conventional and high pressure coolant supplies. Int J Mach Tools Manuf. 2007;47:884–891.
  • Kaynak Y, Gharibi A, Yılmaz U, et al. A comparison of flood cooling, minimum quantity lubrication and high pressure coolant on machining and surface integrity of titanium Ti-5553 alloy. J Manuf Process. 2018;34:503–512.
  • Deshpande S, Deshpande Y. A review on cooling systems used in machining processes. Mater Today Proc. 2019;18:5019–5031.
  • Schwarz M, Dado M, Hnilica R, et al. Environmental and health aspects of metalworking fluid use. Polish J Environ Stud. 2015;24:37–45.
  • Devillez A, Schneider F, Dominiak S, et al. Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools. Wear. 2007;262:931–942.
  • Nouari M, List G, Girot F, et al. Experimental analysis and optimisation of tool wear in dry machining of aluminium alloys. Wear. 2003;255:1359–1368.
  • Rafai NH, Islam MN. Comparison of dry and flood turning in terms of quality of turned parts. WCE 2010 - world congr. Eng. 2010;2010(3):2044–2049.
  • Senevirathne SWMAI, Punchihewa HKG. Comparison of tool life and surface roughness with MQL, flood cooling, and dry cutting conditions with P20 and D2 steel. IOP Conf Ser Mater Sci Eng. 2017;244:012006.
  • Shashidhara YM, Jayaram SR. Vegetable oils as a potential cutting fluid-An evolution. Tribol Int. 2010;43:1073–1081.
  • Kuram E, Ozcelik B, Demirbas E. 2013. Green manufacturing processes and systems. 1st ed. Berlin Heidelberg Gebze-Kocaeli Turkey: Springer-Verlag; DOI:10.1007/978-3-642-33792-5
  • de Paula MA, Ribeiro MV, Souza JVC, et al. Analysis of the performance of coated carbide cutting tools in the machining of martensitic stainless steel aisi 410 in dry and mql conditions. Nanotechnology. 2018.
  • Pereira O, Martín-Alfonso JE, Rodríguez A, et al. Sustainability analysis of lubricant oils for minimum quantity lubrication based on their tribo-rheological performance. J Clean Prod. 2017;164:1419–1429.
  • Stephenson DA, Agapiou JSA. Metal cutting theory and practice. 3rd ed. Boca Raton FL: CRC Press Taylor & Francis Group; 2016. p. 33487–2742.
  • Qin S, Li Z, Guo G, et al. Analysis of minimum quantity lubrication (MQL) for different coating tools during turning of TC11 titanium alloy. Materials (Basel). 2016;9:804.
  • Khatri A, Jahan MP. Investigating tool wear mechanisms in machining of Ti-6Al-4V in flood coolant, dry and MQL conditions. Procedia Manuf. 2018;26:434–445.
  • Mathonsi TN, Laubscher RF, Gupta K. On machinability of titanium grade 4 under minimum quantity lubrication assisted high speed machining. IOP Conf Ser Mater Sci Eng. 2018;430. DOI:10.1088/1757-899X/430/1/012013
  • Rahman SS, Ashraf MZI, Amin AN, et al. Tuning nanofluids for improved lubrication performance in turning biomedical grade titanium alloy. J Clean Prod. 2019;206:180–196.
  • Raj A, Wins KLD, Varadarajan AS. Comparison of surface roughness and chip characteristics obtained under different modes of lubrication during hard turning of AISI H13 tool work steel. IOP Conf Ser Mater Sci Eng. 2016;149. DOI:10.1088/1757-899X/149/1/012017
  • Raj A, Wins KLD, Varadarajan AS. Evaluation of the performance during hard turning of OHNS steel with minimal cutting fluid application and its comparison with minimum quantity lubrication. IOP Conf Ser Mater Sci Eng. 2016;149. DOI:10.1088/1757-899X/149/1/012021
  • Tamang SK, Chandrasekaran M, Palanikumar K, et al. Machining performance optimisation of mql-assisted turning of inconel-825 superalloy using ga for industrial applications. Int J Mach Mach Mater. 2019;21:43–64.
  • Ekinovi E, Begovi E, Prcanovi H. MQL machining of difficult to cut materials. In: Trends in the development of machinery and associated technology. Istanbul (Turkey); 2013. p. 10–11.
  • Sarıkaya M, Yılmaz V, Güllü A. Analysis of cutting parameters and cooling/lubrication methods for sustainable machining in turning of Haynes 25 superalloy. J Clean Prod. 2016;133:172–181.
  • Jamaludin AS, Hosokawa A, Furumoto T, et al. Study on the effectiveness of extreme cold mist MQL system on turning process of stainless steel AISI 316. IOP Conf Ser Mater Sci Eng. 2018;319. DOI:10.1088/1757-899X/319/1/012054
  • Maruda RW, Krolczyk GM, Feldshtein E, et al. A study on droplets sizes, their distribution and heat exchange for minimum quantity cooling lubrication (MQCL). Int J Mach Tools Manuf. 2016;100:81–92.
  • Gatade VT, Patil VT, Kuppan P, et al. Experimental investigation of machining parameter under {MQL} milling of {SS}304. {IOP} Conf. Ser Mater Sci Eng. 2016;149:12023.
  • Gajrani KK, Suvin PS, Kailas SV, et al. Hard machining performance of indigenously developed green cutting fluid using flood cooling and minimum quantity cutting fluid. J Clean Prod. 2019;206:108–123.
  • Sharma J, Sidhu BS. Investigation of effects of dry and near dry machining on AISI D2 steel using vegetable oil. J Clean Prod. 2014;66:619–623.
  • Dennison MS, Sivaram NM, Barik D, et al. Turning operation of AISI 4340 steel in flooded, near-dry and dry conditions: a comparative study on tool-work interface temperature. Mech Mech Eng. 2019;23:172–182.
  • Minh Duc T, Long TT. Investigation of MQL-employed hard-milling process of S60C steel using coated-cemented carbide tools. J Mech Eng Autom. 2016;6:128–132.
  • Ulutan D, Özel T. Hard machining. Mod Manuf Process. 2019;309–321. DOI:10.1002/9781119120384.ch13
  • Amiril SAS, Rahim EA, Hishamudin AZ. Effect of nozzle distance and cutting parameters on MQL machining of AISI 1045. J Phys Conf Ser. 2019;1150. DOI:10.1088/1742-6596/1150/1/012045
  • Abellan-Nebot JV, Rogero MO. Sustainable machining of molds for tile industry by minimum quantity lubrication. J Clean Prod. 2019;240:118082.
  • Al-Ghamdi KA, Iqbal A. A sustainability comparison between conventional and high-speed machining. J Clean Prod. 2015;108:192–206.
  • Gupta S, Chandra V, Kumar P. Assessment of machining parameters on EN-24 steel under dry, wet and MQL condition using multi coated inserts. J Phys Conf Ser. 2019;1240:012141.
  • Hassanpour H, Sadeghi MH, Rasti A, et al. Investigation of surface roughness, microhardness and white layer thickness in hard milling of AISI 4340 using minimum quantity lubrication. J Clean Prod. 2016;120:124–134.
  • Shokoohi Y, Khosrojerdi E, Rassolian Shiadhi BH. Machining and ecological effects of a new developed cutting fluid in combination with different cooling techniques on turning operation. J Clean Prod. 2015;94:330–339.
  • Beliu I, Tamaag I. Effect of cooling condition over surface quality in turning of aluminium alloy 6082-T6. IOP Conf Ser Mater Sci Eng. 2019;564. DOI:10.1088/1757-899X/564/1/012009
  • Chirita B, Tampu NC, Brabie G, et al. Experimental investigation on the effects of cooling system on surface quality in high speed milling of an aluminium alloy. IOP Conf Ser Mater Sci Eng. 2016;145. DOI:10.1088/1757-899X/145/2/022006
  • Dasch JM, Kurgin SK. A characterisation of mist generated from minimum quantity lubrication (MQL) compared to wet machining. Int J Mach Mach Mater. 2010;7:82–95.
  • Sundara Murthy K, Rajendran I. A study on optimisation of cutting parameters and prediction of surface roughness in end milling of aluminium under MQL machining. Int J Mach Mach Mater. 2010;7:112–128.
  • Fratila D, Caizar C. Application of Taguchi method to selection of optimal lubrication and cutting conditions in face milling of AlMg3. J Clean Prod. 2011;19:640–645.
  • Hadad M, Sadeghi B. Minimum quantity lubrication-MQL turning of AISI 4140 steel alloy. J Clean Prod. 2013;54:332–343.
  • Huang P, Li H, Zhu WL, et al. Effects of eco-friendly cooling strategy on machining performance in micro-scale diamond turning of Ti–6Al–4V. J Clean Prod. 2020;243:118526.
  • Hong SY, Ding Y, Jeong WC. Friction and cutting forces in cryogenic machining of Ti-6Al-4V. Int J Mach Tools Manuf. 2001;41:2271–2285.
  • Wang ZY, Rajurkar KP. Cryogenic machining of hard-to-cut materials. Wear. 2000;239:168–175.
  • Pusavec F, Deshpande A, Yang S, et al. Sustainable machining of high temperature Nickel alloy - Inconel 718: part 1 - Predictive performance models. J Clean Prod. 2014;81:255–269.
  • Giasin K, Ayvar-Soberanis S, Hodzic A. Evaluation of cryogenic cooling and minimum quantity lubrication effects on machining GLARE laminates using design of experiments. J Clean Prod. 2016;135:533–548.
  • Pereira O, Rodríguez A, Fernández-Abia AI, et al. Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304. J Clean Prod. 2016;139:440–449.
  • Kalyan Kumar KVBS, Choudhury SK. Investigation of tool wear and cutting force in cryogenic machining using design of experiments. J Mater Process Technol. 2008;203:95–101.
  • Kane SN, Mishra A, Dutta AK. Preface: international conference on recent trends in physics (ICRTP 2016). J Phys Conf Ser. 2016;755. DOI:10.1088/1742-6596/755/1/011001.
  • Nalbant M, Yildiz Y. Effect of cryogenic cooling in milling process of AISI 304 stainless steel. Trans Nonferrous Met Soc China. 2011;21:72–79. English Ed.
  • Sivaiah P, Chakradhar D. Effect of cryogenic coolant on turning performance characteristics during machining of 17-4 PH stainless steel: a comparison with MQL, wet, dry machining. CIRP J Manuf Sci Technol. 2018;21:86–96.
  • Paul S, Dhar NR, Chattopadhyay AB. Beneficial effects of cryogenic cooling over dry and wet machining on tool wear and surface finish in turning AISI 1060 steel. J Mater Process Technol. 2001;116:44–48.
  • Sun S, Brandt M, Dargusch MS. Machining Ti-6Al-4V alloy with cryogenic compressed air cooling. Int J Mach Tools Manuf. 2010;50:933–942.
  • Su Y, He N, Li L, et al. Refrigerated cooling air cutting of difficult-to-cut materials. Int J Mach Tools Manuf. 2007;47:927–933.
  • Mia M, Singh GR, Gupta MK, et al. Influence of Ranque-Hilsch vortex tube and nitrogen gas assisted MQL in precision turning of Al 6061-T6. Precis Eng. 2018;53:289–299.
  • Alsayyed B, Hamdan MO, Aldajah S. Vortex tube impact on cooling milling machining. ASME Int Mech Eng Congr Expo Proc. 2012;3:773–776.
  • Yüksel S, Onat A. Investigation of CNC tuning parameters by using a vortex tube cooling system. Acta Phys Pol A. 2015;127:881–885.
  • Zimmermann H. New hard/lubricant coating for dry machining k. Wear. 1999;113:286–292.
  • Tosun N, Rostam S, RASUL S. Use of nano cutting fluid in machining 17–21. 2016.
  • Ali MAM, Khalil ANM, Azmi AI. Effect of Al2O3 nanolubrication with Sodium Dodecylbenzene Sulfonate (SDBS] on surface roughness and tool wear under MQL during turning of Ti-6AL-4T. IOP Conf Ser Mater Sci Eng. 2016;114. DOI:10.1088/1757-899X/114/1/012110
  • Sayuti M, Sarhan AAD, Salem F. Novel uses of SiO2 nano-lubrication system in hard turning process of hardened steel AISI4140 for less tool wear, surface roughness and oil consumption. J Clean Prod. 2014;67:265–276.
  • Sharma P, Sidhu BS, Sharma J. Investigation of effects of nanofluids on turning of AISI D2 steel using minimum quantity lubrication. J Clean Prod. 2015;108:72–79.
  • Najiha MS, Rahman MM, Kadirgama K. 2016. Performance of water-based TiO2 nanofluid during the minimum quantity lubrication machining of aluminium alloy, AA6061-T6. J Clean Prod. Elsevier Ltd. 135. doi:10.1016/j.jclepro.2015.12.015.
  • Ooi ME, Sayuti M, Sarhan AAD. Fuzzy logic-based approach to investigate the novel uses of nano suspended lubrication in precise machining of aerospace AL tempered grade 6061. J Clean Prod. 2015;89:286–295.
  • Pragat Singh JSD, Singh H, Bhatti MS. Performance evaluation of coated carbide tool during face milling of AISI 304 under different cutting environments. Mater Res, 2019; Express 6
  • Mahboob Ali MA, Azmi AI, Mohd Zain MZ, et al. New bio-based nanolubricants for turning of Inconel 718 towards improvement of tool wear resistance and specific cutting energy. IOP Conf Ser Mater Sci Eng. 2019;670. DOI:10.1088/1757-899X/670/1/012007
  • Garg A, Sarma S, Panda BN, et al. Study of effect of nanofluid concentration on response characteristics of machining process for cleaner production. J Clean Prod. 2016;135:476–489.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.