168
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Unburnt carbon estimation through flame image and gauss process regression

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 903-922 | Accepted 20 Feb 2023, Published online: 05 Mar 2023

References

  • Bartoňová L. Unburned carbon from coal combustion ash: an overview. Fuel Process Technol. 2015 Jun;134:136–158. DOI:10.1016/j.fuproc.2015.01.028.
  • Golgiyaz S, Fatih Talu M, Daşkın C M, et al. Estimation of excess air coefficient on coal combustion processes via gauss model and artificial neural network. Alexandria Eng J. 2022;61(2):1079–1089.
  • Sujatha K, Bhavani NPG, Godhavari T, et al. Smart Sensor for NO x and so 2 Emissions in Power Station Boilers (SSEPSB). Indian J Sci Technol. 2015;8(27):974–6846.
  • Liu Y, Fan Y, Chen J. Flame images for oxygen content prediction of combustion systems using DBN. Energy Fuels. 2017;31(8):8776–8783.
  • Tóth P, Garami A, Csordás B. Image-based deep neural network prediction of the heat output of a step-grate biomass boiler. Appl Energy. 2017;200:155–169.
  • Golgiyaz S, Talu MF, Onat C, “Estimation of excess air coefficient for automated feed coal burners with image-based gauss model. International Artificial Intelligence and Data Processing Symposium (IDAP’16), Malatya,Turkey; 2016 528–531.
  • Golgiyaz S, Talu MF, Onat C. Görüntü İşleme ve Makine Öğrenmesi Yöntemleri ile Baca Gazı Sıcaklığının Tahmin Edilmesi. Eur J Sci Technol. 2019;283–291. DOI:10.31590/ejosat.568348
  • Yan W, Li J. Modeling of the Unburned carbon in fly ash. Energy Power Eng. 2009 Dec;1(2):720–726. DOI:10.4236/EPE.2009.12014.
  • Helle S, Gordon A, Alfaro G, et al. Coal blend combustion: link between unburnt carbon in fly ashes and maceral composition. Fuel Process Technol. 2003 Mar;80(3):209–223. DOI:10.1016/S0378-3820(02)00245-X.
  • Backreedy RI, Jones JM, Pourkashanian M, et al. Burn-out of pulverised coal and biomass chars☆. Fuel. 2003 Oct;82(15–17):2097–2105.
  • Stubington J, Wang AL. Unburnt carbon elutriation from pressurised fluidised bed combustion of Australian black coals. Fuel. 2000 Aug;79(10):1155–1160.
  • Williams A, Jones JM, Ma L, et al. Pollutants from the combustion of solid biomass fuels. Prog Energ Combust Sci. 2012;38(2):113–137. Pergamon. 10.1016/j.pecs.2011.10.001.
  • Sathyanathan VT, Mohammad KP. Prediction of unburnt carbon in tangentially fired boiler using Indian coals. Fuel. 2004;83(16):2217–2227.
  • Bartoňová L, Klika Z, Spears DA. Characterization of unburned carbon from ash after bituminous coal and lignite combustion in CFBs. Fuel. 2007 Feb;86(3):455–463.
  • Pallarés J, Arauzo I, Teruel E. Development of an engineering system for unburned carbon prediction. Fuel. 2009 Jan;88(1):187–194.
  • Moroń W. In combustion characteristics of blended coals. Third European Combustion Meeting (ECM), 11th-13th April, Crete, Greece. 2007. p. 5–40.
  • Lee B-H, Eddings EG, Jeon C-H. Effect of coal blending methods with different excess oxygen on unburned carbon and NOx emissions in an entrained flow reactor. Energy Fuels. 2012 Nov;26(11):6803–6814.
  • Ilamathi P, Selladurai V, Balamurugan K. Modeling and optimization of unburned carbon in coal-fired boiler using artificial neural network and genetic algorithm. J Energy Resour Technol. 2013 Sep;135(3). DOI:10.1115/1.4023328
  • Shimoda M, Sugano A, Kimura T, et al. Prediction method of unburnt carbon for coal fired utility boiler using image processing technique of combustion flame. IEEE Trans Energy Convers. 1990;5(4):640–645.
  • Hadi K, Ichimura R, Hashimoto N, et al. Spherical turbulent flame propagation of pulverized coal particle clouds in an O2/N2 atmosphere. Proc Combust Inst. 2019;37(3):2935–2942.
  • Chen J, Chan LLT, Cheng YC. Gaussian process regression based optimal design of combustion systems using flame images. Appl Energy. 2013;111:153–160.
  • González-Cencerrado A, Peña B, Gil A. Experimental analysis of biomass co-firing flames in a pulverized fuel swirl burner using a CCD based visualization system. Fuel Process Technol. 2015;130(C):299–310.
  • Golgiyaz S, Talu MF, Onat C. Artificial neural network regression model to predict flue gas temperature and emissions with the spectral norm of flame image. Fuel. 2019 Nov;255:115827.
  • Onat C, Daskin M, Toraman S, et al. Prediction of combustion states from flame image in a domestic coal burner. Meas Sci Technol Meas Sci Technol. 2021;32(7):75403–75413.
  • Weszka JS, Dyer CR, Rosenfeld A. A comparative study of texture measures for terrain classification. IEEE Trans Syst Man Cybern. 1976;SMC-6(4):269–285.
  • Zhang H, Sun Z, Tan T. Contact lens detection based on weighted LBP. Proceedings - International Conference on Pattern Recognition; 2010 4279–4282. doi: 10.1109/ICPR.2010.1040.
  • “Microsoft Webcam: LifeCam Studio – Microsoft Accessories. [updated 9 Aug 2021; cited 9 Aug 2021]. Available from: https://www.microsoft.com/tr-tr/accessories/products/webcams/lifecam-studio?activetab=overview%3Aprimaryr2
  • testo 350 - baca gazı analiz sistemi için analizör ünitesi | Hammadde çıkarma ve boru hatları | Emisyonlar | Endüstri | Hedef sektörler | Testo Elektronik ve Test Ölçüm Cihazları Dış. Ticaret Ltd. Şti. [updated 9 Aug 2021; cited 9 Aug 2021]. Available from: https://www.testo.com/tr-TR/testo-350/p/0632-3510
  • Sun D, Lu G, Zhou H, et al. Quantitative assessment of flame stability through image processing and spectral analysis. IEEE Trans Instrum Meas. 2015;64(12):3323–3333.
  • Lu G, Yan Y, Colechin M, et al. Monitoring of oscillatory characteristics of pulverized coal flames through image processing and spectral analysis. IEEE Trans Instrum Meas. 2006 Feb;55(1):226–231. DOI:10.1109/TIM.2005.861254.
  • González-Cencerrado A, Peña B, Gil A. Coal flame characterization by means of digital image processing in a semi-industrial scale PF swirl burner. Appl Energy. 2012;94:375–384.
  • González-Cencerrado A, Gil A, Peña B. Characterization of PF flames under different swirl conditions based on visualization systems. Fuel. 2013 Nov;113:798–809.
  • Ojala T, Pietikäinen M, Mäenpää T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell. 2002 Jul;24(7):971–987. DOI:10.1109/TPAMI.2002.1017623.
  • “Documentation Home. [cited 2021 Jul 29]. Available from: https://www.mathworks.com/help/index.html.
  • Huang N, Li R, Lin L, et al. Low redundancy feature selection of short term solar irradiance prediction using conditional mutual information and gauss process regression. Sustain. 2018 Aug;10(8):2889. DOI:10.3390/SU10082889.
  • Rasmussen CE, Nickisch H. Gaussian Processes for Machine Learning (GPML) Toolbox. J Mach Learn Res. 2010;11:3011–3015.
  • Waller DJ, Brown RC. Photoacoustic response of unburnt carbon in fly ash to infrared radiation. Fuel. 1996;75(13):1568–1574.
  • Habib MA, Elshafei M, Dajani M. Influence of combustion parameters on NOx production in an industrial boiler. Comput Fluids. 2008 Jan;37(1):12–23. DOI:10.1016/j.compfluid.2007.04.006.
  • Chandra Dhal G, Mohan D, Prasad R. Preparation and application of effective different catalysts for simultaneous control of diesel soot and NOx emissions: an overview. Catal Sci Technol. 2017;7(9):1803.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.