231
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Co-doped (N and Fe) TiO2 photosensitising nanoparticles and their applications: a review

, , &
Pages 1320-1343 | Accepted 02 Mar 2023, Published online: 15 Mar 2023

References

  • Mahmoud WMM, Rastogi T, Kümmerer K. Application of titanium dioxide nanoparticles as a photocatalyst for the removal of micropollutants such as pharmaceuticals from water. Curr Opin Green Sustain Chem. 2017;6:1–10.
  • Haider A, Al-Anbari R, Kadhim G, et al. Synthesis and photocatalytic activity for TiO2 nanoparticles as air purification. MATEC Web of Conferences. 162; 2018. p. 1–6. 10.1051/matecconf/201816205006.
  • Shuai C, Shuai C, Feng P, et al. Antibacterial capability, physicochemical properties, and biocompatibility of nTio2 incorporated polymeric scaffolds. Polymers. 2018;10:328.
  • Abbas M, Iftikhar H, Malik MH, et al. Surface coatings of TiO2 nanoparticles onto the designed fabrics for enhanced self-cleaning properties. Coatings. 2018;8:35.
  • Fujishima K, Honda A. Electrochemical photolysis of water one and two-dimensional structure of Poly (L-Alanine) shown by specific heat measurements at low. Nature. 1972;238:37–38.
  • Zhang J, Zhou P, Liu J, et al. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys Chem Chem Phys. 2014;16:20382–20386.
  • Ismael M. Highly effective ruthenium-doped TiO2 nanoparticles photocatalyst for visible-light-driven photocatalytic hydrogen production. New J Chem. 2019;43:9596–9605.
  • Ismael M. Enhanced photocatalytic hydrogen production and degradation of organic pollutants from Fe (III) doped TiO2 nanoparticles. J Environ Chem Eng. 2020;8:103676.
  • Humayun M, Raziq F, Khan A, et al. Modification strategies of TiO2 for potential applications in photocatalysis: a critical review. Green Chem Lett Rev. 2018;11:86–102.
  • Zaleska A. Doped-TiO2: a review. Recent Pat Eng. 2008;2:157–164.
  • Xu J, Liu Q, Lin S, et al. One-step synthesis of nanocrystalline N-doped TiO2 powders and their photocatalytic activity under visible light irradiation. Res Chem Intermed. 2013;39:1655–1664.
  • Di Valentin C, Pacchioni G, Selloni A. Origin of the different photoactivity of N-doped anatase and rutile TiO2. Phys Rev B. 2004;70:85116.
  • Lin Z, Orlov A, Lambert RM, et al. New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2. J Phys Chem B. 2005;109:20948–20952.
  • Asahi R, Morikawa T, Irie H, et al. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev. 2014;114:9824–9852.
  • Wellia DV, Xu QC, Sk MA, et al. Experimental and theoretical studies of Fe-doped TiO2 films prepared by peroxo sol–gel method. Appl Catal A Gen. 2011;401:98–105.
  • Huang W, Tang X, Felner I, et al. Preparation and characterization of FexOy–TiO2 via sonochemical synthesis. Mater Res Bull. 2002;37:1721–1735.
  • Liu Z, Wang Y, Chu W, et al. Characteristics of doped TiO2 photocatalysts for the degradation of methylene blue waste water under visible light. J Alloys Compd. 2010;501:54–59.
  • Liu Y, Xu C, Feng Z. Characteristics and anticorrosion performance of Fe-doped TiO2 films by liquid phase deposition method. Appl Surf Sci. 2014;314:392–399.
  • Zhang Y, Shen H, Liu Y. Cooperation between N and Fe in co-doped TiO2 photocatalyst. Res Chem Intermed. 2016;42:687–711.
  • Larumbe S, Monge M, Gómez-Polo C. Comparative study of (N, Fe) doped TiO 2 photocatalysts. Appl Surf Sci. 2015;327:490–497.
  • Moradi V, Jun MBG, Blackburn A, et al. Significant improvement in visible light photocatalytic activity of Fe doped TiO 2 using an acid treatment process. Appl Surf Sci. 2018;427:791–799.
  • Hadjiivanov KI, Klissurski DG. Surface chemistry of titania (anatase) and titania-supported catalysts. Chem Soc Rev. 1996;25:61–69.
  • Yang S, Huang N, Jin YM, et al. Crystal shape engineering of anatase TiO2 and its biomedical applications. Cryst Eng Comm. 2015;17:6617–6631.
  • Heller A. Chemistry and applications of photocatalytic oxidation of thin organic films. Acc Chem Res. 1995;28:503–508.
  • Linsebigler AL, Guangquan L, Yates JT. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev. 1995;95:735–758.
  • Ragesh P, Anand Ganesh V, Nair SV, et al. A review on “self-cleaning and multifunctional materials. J Mater Chem A Mater. 2014;2:14773–14797.
  • Lü J, Huang K, Chen X, et al. Applied surface science enhanced photoinduced hydrophilicity of the sol – gel-derived ZnO thin films by. Appl Surf Sci. 2011;257:2086–2090.
  • Hyde GK, Scarel G, Spagnola JC, et al. Atomic layer deposition and abrupt wetting transitions on nonwoven polypropylene and woven cotton fabrics. Langmuir. 2010;26:2550–2558.
  • Miyauchi M, Nakajima A, Watanabe T, et al. Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films. Chem Mater. 2002;14:2812–2816.
  • Nica IC, Stan MS, Dinischiotu A. Current photocatalytic applications of nano-scaled titanium dioxide in the new era of “smart” technologies. Rev Biol Biomed Sci. 2018;2:1–11.
  • Ghanashyam Krishna M, Vinjanampati M, Dhar Purkayastha D. Metal oxide thin films and nanostructures for self-cleaning applications: current status and future prospects. Eur Phys J Appl Phys. 2013;62:30001.
  • Fujishima A, Zhang X, Tryk DA. TiO2 photocatalysis and related surface phenomena. Surf Sci Rep. 2008;63:515–582.
  • Zhao XT, Sakka K, Kihara N, et al. Hydrophilicity of TiO2 thin films obtained by RF magnetron sputtering deposition. Curr Appl Phys. 2006;6:931–933.
  • Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science. 2001;293:269–271.
  • Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xnx powders. J Phys Chem B. 2003;107:5483–5486.
  • Ihara T, Miyoshi M, Iriyama Y, et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl Catal, B. 2003;42:403–409.
  • Zhao Z, Liu Q. Mechanism of higher photocatalytic activity of anatase TiO2 doped with nitrogen under visible-light irradiation from density functional theory calculation. J Phys D Appl Phys. 2008;41:025105.
  • Hashimoto K, Irie H, Fujishima A. TiO2 Photocatalysis: a historical overview and future prospects. Jpn J Appl Phys. 2005;44:8269–8285.
  • Hoffmann MR, Martin ST, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem Rev. 1995;95:69–96.
  • Vione D, Minero C, Maurino V, et al. Degradation of phenol and benzoic acid in the presence of a TiO 2-based heterogeneous photocatalyst. Appl Catal, B. 2005;58:79–88.
  • Pirkanniemi K, Sillanpää M. Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere. 2002;48:1047–1060.
  • Malato S, Blanco J, Vidal A, et al. Photocatalysis with solar energy at a pilot-plant scale: an overview. Appl Catal, B. 2002;37:1–15.
  • Ren H-T, Jia S-Y, Zou J-J, et al. A facile preparation of Ag2O/P25 photocatalyst for selective reduction of nitrate. Appl Catal, B. 2015;176–177:53–61.
  • Fan C, Chen C, Wang J, et al. Black hydroxylated titanium dioxide prepared via ultrasonication with enhanced photocatalytic activity. Sci Rep. 2015;5:11712.
  • Bessekhouad Y, Robert D, Weber JV, et al. Effect of alkaline-doped TiO2 on photocatalytic efficiency. J Photochem Photobiol A Chem. 2004;167:49–57.
  • Malato S, Blanco J, Cáceres J, et al. Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy. Catal Today. 2002;76:209–220.
  • Phanikrishna Sharma MV, Durga Kumari V, Subrahmanyam M. TiO2 supported over SBA-15: an efficient photocatalyst for the pesticide degradation using solar light. Chemosphere. 2008;73:1562–1569.
  • Konstantinou IK, Albanis TA. Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: intermediates and degradation pathways. Appl Catal, B. 2003;42:319–335.
  • Daneshvar N, Aber S, Seyed Dorraji MS, et al. Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light. Sep Purif Technol. 2007;58:91–98.
  • Adesina AA. Industrial exploitation of photocatalysis: progress, perspectives and prospects. Catal Surv Asia. 2004;8:265–273.
  • Brezová V, Blažková A, Karpinský Ľ, et al. Phenol decomposition using Mn+/TiO2 photocatalysts supported by the sol-gel technique on glass fibres. J Photochem Photobiol A Chem. 1997;109:177–183.
  • Ling H, Kim K, Liu Z, et al. Photocatalytic degradation of phenol in water on as-prepared and surface modified TiO2 nanoparticles. Catal Today. 2015;258:96–102.
  • Hao X, Li M, Zhang L, et al. Photocatalyst TiO2/WO3/GO nanocomposite with high efficient photocatalytic performance for BPA degradation under visible light and solar light illumination. J Ind Eng Chem. 2017;55:140–148.
  • Khamboonrueang D, Srirattanapibul S, Tang IM, et al. TiO2∙rGO nanocomposite as a photo catalyst for the reduction of Cr6+. Mater Res Bull. 2018;107:236–241.
  • Sutisna S, Wibowo E, Rokhmat M, et al. Batik wastewater treatment using TiO2 nanoparticles coated on the surface of plastic sheet. Procedia Eng. 2017;170:78–83.
  • Lyu J, Zhu L, Burda C. Considerations to improve adsorption and photocatalysis of low concentration air pollutants on TiO 2. Catal Today. 2014;225:24–33.
  • Rodrigues S, Ranjit KT, Uma S, et al. Single-step synthesis of a highly active visible-light photocatalyst for oxidation of a common indoor air pollutant: acetaldehyde. Adv Mater. 2005;17:2467–2471.
  • Fujiwara K, Müller U, Pratsinis SE. Pd subnano-clusters on TiO2 for solar-light removal of NO. ACS Catal. 2016;6:1887–1893.
  • Januszkiewicz K, Kowalski KG. Air purification in highly-urbanized areas with use TiO2: new approach to design the urban public space to benefit human condition. IOP Conf Ser Mater Sci Eng. 2019;603:052071.
  • Martins NCT, Ângelo J, Violeta A, et al. Applied catalysis B: environmental N-doped carbon quantum dots/TiO 2 composite with improved photocatalytic activity. Appl Catal, B. 2016;193:67–74.
  • Zeng L, Song W, Li M, et al. Applied catalysis B: environmental catalytic oxidation of formaldehyde on surface of H TiO2/H C TiO2 without light illumination at room temperature. Appl Catal, B. 2014;147:490–498.
  • Hernández-Alonso MD, Tejedor-Tejedor I, Coronado JM, et al. Operando FTIR study of the photocatalytic oxidation of acetone in air over TiO2–ZrO2 thin films. Catal Today. 2009;143:364–373.
  • Xu YJ, Zhuang Y, Fu X. New insight for enhanced photocatalytic activity of TiO2 by doping carbon nanotubes: a case study on degradation of benzene and methyl orange. J Phys Chem C. 2010;114:2669–2676.
  • Kang X, Song XZ, Han Y, et al. Defect-engineered TiO2 hollow spiny nanocubes for phenol degradation under visible light irradiation. Sci Rep. 2018;8:1–10.
  • Yamazaki S, Tsukamoto H, Araki K, et al. Photocatalytic degradation of gaseous tetrachloroethylene on porous TiO2 pellets. Appl Catal, B. 2001;33:109–117.
  • Ahmed S, Rasul MG, Brown R, et al. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J Environ Manage. 2011;92:311–330.
  • Parida KM, Sahu N, Biswal NR, et al. Preparation, characterization, and photocatalytic activity of sulfate-modified titania for degradation of methyl orange under visible light. J Colloid Interface Sci. 2008;318:231–237.
  • Guan H, Chi D, Yu J, et al. A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-Imidacloprid. Pestic Biochem Physiol. 2008;92:83–91.
  • Aragay G, Pino F, Merkoçi A. Nanomaterials for sensing and destroying pesticides. Chem Rev. 2012;112:5317–5338.
  • Devipriya S, Yesodharan S. Photocatalytic degradation of pesticide contaminants in water. Sol Energy Mater Sol Cells. 2005;86:309–348.
  • Lee K, Ku H, Pak D. OH radical generation in a photocatalytic reactor using TiO2 nanotube plates. Chemosphere. 2016;149:114–120.
  • Rabindranathan S, Devipriya S, Yesodharan S. Photocatalytic degradation of phosphamidon on semiconductor oxides. J Hazard Mater. 2003;102:217–229.
  • Lhomme L, Brosillon S, Wolbert D. Photocatalytic degradation of pesticides in pure water and a commercial agricultural solution on TiO2 coated media. Chemosphere. 2008;70:381–386.
  • Attarchi N, Montazer M, Toliyat T. Ag/TiO2/β-CD nano composite: preparation and photo catalytic properties for methylene blue degradation. Appl Catal A Gen. 2013;467:107–116. DOI:10.1016/j.apcata.2013.07.018
  • Bzdon S, Góralski J, Maniukiewicz W, et al. Radiation-induced synthesis of Fe-doped TiO 2: characterization and catalytic properties. Radiat Phys Chem. 2012;81:322–330.
  • Jesus MAMLD, Neto JTDS, Timò G, et al. Superhydrophilic self-cleaning surfaces based on TiO2 and TiO2/SiO2 composite films for photovoltaic module cover glass. Appl Adhes Sci. 2015;3:5.
  • Yamamoto M, Nishikawa N, Mayama H, et al. Theoretical explanation of the Lotus effect: superhydrophobic property changes by removal of nanostructures from the surface of a Lotus leaf. Langmuir. 2015;31:7355–7363.
  • Mills A, Lepre A, Elliott N, et al. Characterisation of the photocatalyst Pilkington Activ TM: a reference film photocatalyst ? J Photochem Photobiol A. 2003;160:213–224.
  • Honda H, Ishizaki A, Soma R, et al. Application of photocatalytic reactions caused by TiO2 film to improve the maintenance factor of lighting systems. J Illum Eng Soc. 1998;27:42–49.
  • Zhang L, Dillert R, Bahnemann D, et al. Photoinduced hydrophilicity and self-cleaning: models and reality. Energy Environ Sci. 2012;5:7491–7507.
  • Synnott D, Nolan N, Ryan D, et al. 14 - Self-cleaning tiles and glasses for eco-efficient buildings. In: Pacheco-Torgal F, Diamanti MV, Nazari A Granqvist C-G, editors. Nanotechnology in eco-efficient construction. Woodhead Publishing; 2013. pp. 327–342. DOI:10.1533/9780857098832.3.327.
  • Banerjee S, Dionysiou DD, Pillai SC. Applied catalysis B: environmental self-cleaning applications of TiO 2 by photoinduced hydrophilicity and photocatalysis. Appl Catal, B. 2015;176–177:396–428.
  • Mo J, Zhang Y, Xu Q, et al. Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmos Environ. 2009;43:2229–2246.
  • Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev. 2007;107:2891–2959.
  • Jacoby WA, Blake DM, Fennell JA. Mineralization of bacterial cell mass on a photocatalytic surface in air. Environ Sci Technol. 1998;32:15–18.
  • Ismael M. Corrigendum to “A review and recent advances in solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO2 nanoparticles” [Sol. Energy 211 (2020) 522–546]. Solar Energy. 2022;236:898–905.
  • Ismael M. Latest progress on the key operating parameters affecting the photocatalytic activity of TiO2-based photocatalysts for hydrogen fuel production: a comprehensive review. Fuel. 2021;303:121207.
  • Chen X, Li C, Grätzel M, et al. Nanomaterials for renewable energy production and storage. Chem Soc Rev. 2012;41:7909–7937.
  • Chiarello GL, Dozzi MV, Selli E. TiO2-based materials for photocatalytic hydrogen production. J Energy Chem. 2017;26:250–258.
  • Altomare M, Pozzi M, Allieta M, et al. H2 and O2 photocatalytic production on TiO2 nanotube arrays: effect of the anodization time on structural features and photoactivity. Appl Catal, B. 2013;136–137:81–88.
  • Zhong R, Zhang Z, Yi H, et al. Covalently bonded 2D/2D O-g-C3N4/TiO2 heterojunction for enhanced visible-light photocatalytic hydrogen evolution. Appl Catal, B. 2018;237:1130–1138.
  • Patil SB, Basavarajappa PS, Ganganagappa N, et al. Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification. Int J Hydrogen Energy. 2019;44:13022–13039.
  • Zhou Y, Zhang Q, Shi X, et al. Photocatalytic reduction of CO2 into CH4 over Ru-doped TiO2: synergy of Ru and oxygen vacancies. J Colloid Interface Sci. 2022;608:2809–2819.
  • Slamet HWN, Purnama E, Kosela S, et al. Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method. Catal Commun. 2005;6:313–319.
  • Liu D, Fernández Y, Ola O, et al. On the impact of Cu dispersion on CO2 photoreduction over Cu/TiO2. Catal Commun. 2012;25:78–82.
  • Liu G, Wang H, Wang M, et al. Study on a stretchable, fiber-shaped, and TiO2 nanowire array-based dye-sensitized solar cell with electrochemical impedance spectroscopy method. Electrochim Acta. 2018;267:34–40.
  • Liu B, Sun Y, Wang X, et al. Branched hierarchical photoanode of anatase TiO2 nanotubes on rutile TiO2 nanorod arrays for efficient quantum dot-sensitized solar cells. J Mater Chem A. 2015;3:4445–4452.
  • Dhonde M, Sahu K, Murty VVS, et al. Enhanced photovoltaic performance of a dye sensitized solar cell with Cu/N Co-doped TiO2 nanoparticles. J Mater Sci. 2018;29:6274–6282.
  • Kim C, Kim S, Lee J, et al. Capacitive and oxidant generating properties of black-colored TiO2 nanotube array fabricated by electrochemical self-doping. ACS Appl Mater Interfaces. 2015;7:7486–7491.
  • Chen J, Li Y, Mu J, et al. C@tio2 nanocomposites with impressive electrochemical performances as anode material for lithium-ion batteries. J Alloys Compd. 2018;742:828–834.
  • Su D, Dou S, Wang G. Anatase TiO2: better anode material than amorphous and rutile phases of TiO2 for Na-Ion batteries. Chem Mater. 2015;27:6022–6029.
  • Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227–1249.
  • Galib MB, Mashru M, Jagtap C, et al. Therapeutic potentials of metals in ancient India: a review through Charaka Samhita. J Ayurveda Integr Med. 2011;2:55–63.
  • Gong Y, Li C, Zhang Y, et al. Discovery of ancient mineral medicine in the Lv family tomb of the Northern Song dynasty (1074–1111 ce. Archaeometry. 2019;61:442–449.
  • Seil JT, Webster TJ. Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine. 2012;7:2767–2781.
  • Sunada K, Watanabe T, Hashimoto K. Bactericidal activity of copper-deposited TiO2 thin film under weak UV light illumination. Environ Sci Technol. 2003;37:4785–4789.
  • Dizaj SM, Lotfipour F, Barzegar-Jalali M, et al. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C. 2014;44:278–284.
  • Yadav HM, Kim JS, Pawar SH. Developments in photocatalytic antibacterial activity of nano TiO2: a review. Korean J Chem Eng. 2016;33:1989–1998.
  • Gurbuz M, Atay B, Dogan A. Synthesis of high-temperature-stable TiO2 and its application on Ag±activated ceramic tile. Int J Appl Ceram Technol. 2015;12:426–436.
  • Xin B, Ren Z, Wang P, et al. Study on the mechanisms of photoinduced carriers separation and recombination for Fe 3+ -TiO 2 photocatalysts. Appl Surf Sci. 2007;253:4390–4395.
  • Yu B, Lau WM, Yang J. Preparation and characterization of N–TiO 2 photocatalyst with high crystallinity and enhanced photocatalytic inactivation of bacteria. Nanotechnology. 2013;24:335705.
  • Janpetch N, Vanichvattanadecha C, Rujiravanit R. Photocatalytic disinfection of water by bacterial cellulose/N–F co-doped TiO2 under fluorescent light. Cellul. 2015;22:3321–3335.
  • Karlsson J, Atefyekta S, Andersson M. Controlling drug delivery kinetics from mesoporous titania thin films by pore size and surface energy. Int J Nanomedicine. 2015;10:4425–4436.
  • Gupta B, Poudel BK, Ruttala HB, et al. Hyaluronic acid-capped compact silica-supported mesoporous titania nanoparticles for ligand-directed delivery of doxorubicin. Acta Biomater. 2018;80:364–377.
  • Guo Z, Zheng K, Tan Z, et al. Overcoming drug resistance with functional mesoporous titanium dioxide nanoparticles combining targeting{,} drug delivery and photodynamic therapy. J Mater Chem B. 2018;6:7750–7759.
  • Nakayama M, Sasaki R, Ogino C, et al. Titanium peroxide nanoparticles enhanced cytotoxic effects of X-ray irradiation against pancreatic cancer model through reactive oxygen species generation in vitro and in vivo. Radiat Oncol. 2016;11:91.
  • Dai Z, Song X-Z, Cao J, et al. Dual-stimuli-responsive TiOx/DOX nanodrug system for lung cancer synergistic therapy. RSC Adv. 2018;8:21975–21984.
  • Bagherzadeh R, Montazer M, Latifi M, et al. Evaluation of comfort properties of polyester knitted spacer fabrics finished with water repellent and antimicrobial agents. Fibers Polym. 2007;8:386–392.
  • Davis DC, Wilkerson JW, Zhu J, et al. A strategy for improving mechanical properties of a fiber reinforced epoxy composite using functionalized carbon nanotubes. Compos Sci Technol. 2011;71:1089–1097.
  • Gorenšek M, Recelj P. Nanosilver functionalized cotton fabric. Text Res J. 2007;77:138–141.
  • Mondal S, Hu JL. A novel approach to excellent UV protecting cotton fabric with functionalized MWNT containing water vapor permeable PU coating. J Appl Polym Sci. 2007;103:3370–3376.
  • Wu P, Xie R, Imlay JA, et al. Visible-light-induced photocatalytic inactivation of bacteria by composite photocatalysts of palladium oxide and nitrogen-doped titanium oxide. Appl Catal, B. 2009;88:576–581.
  • Abidi N, Cabrales L, Hequet E. Functionalization of a cotton fabric surface with titania nanosols: applications for self-cleaning and UV-protection properties. ACS Appl Mater Interfaces. 2009;1:2141–2146.
  • Afzal S, Daoud WA, Langford SJ. Photostable self-cleaning cotton by a Copper(II) Porphyrin/TiO2 visible-light photocatalytic system. ACS Appl Mater Interfaces. 2013;5:4753–4759.
  • Pakdel E, Walid AD, Afrin T, et al. Self-cleaning wool: effect of noble metals and silica on visible-light-induced functionalities of nano TiO2 colloid. J Tex Inst. 2015;106:1348–1361.
  • Lam YL, Kan CW, Yuen CWM. Effect of concentration of titanium dioxide acting as catalyst or co-catalyst on the wrinkle-resistant finishing of cotton fabric. Fibers Polym. 2010;11:551–558.
  • Pasqui D, Barbucci R. Synthesis, characterization and self cleaning properties of titania nanoparticles grafted on polyester fabrics. J Photochem Photobiol A Chem. 2014;274:1–6.
  • Tang B, Wang J, Xu S, et al. Application of anisotropic silver nanoparticles: multifunctionalization of wool fabric. J Colloid Interface Sci. 2011;356:513–518.
  • Stan MS, Nica IC, Dinischiotu A, et al. Photocatalytic, antimicrobial and biocompatibility features of cotton knit coated with Fe-N-Doped titanium dioxide nanoparticles. Materials. 2016;9:789.
  • Veronovski N, Rudolf A, Smole MS, et al. Self-cleaning and handle properties of TiO2-modified textiles. Fibers Polym. 2009;10:551–556.
  • Karst D, Yang Y. Potential advantages and risks of nanotechnology for textiles. AATCC Rev. 2006;6:44–48.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.