67
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Performance of an Adsorption Chiller Using Diesel Truck Exhaust: Effect of Operating Parameters

, ORCID Icon, , &
Pages 1610-1626 | Accepted 29 Mar 2023, Published online: 09 Apr 2023

References

  • Jadhao JS, Thombare DG. Review on exhaust gas heat recovery for I.C. Int J Eng Innovative Technol. 2013;2:93–100.
  • Lorentzen G. The use of natural refrigerants: a complete solution to the CFC/HCFC predicament. Int J Refrig. 1995;18:190–197.
  • Calm JM. Emissions and environmental impacts from air-conditioning and refrigeration systems. Int J Refrig. 2002;25:293–305.
  • Sah RP, Choudhury B, Das RK, et al. An overview of modelling techniques employed for performance simulation of low–grade heat operated adsorption cooling systems. Renew Sust Energ Rev. 2017;74:364–376.
  • Chauhan PR, Kaushik SC, Tyagi SK. Current status and technological advancements in adsorption refrigeration systems: a review. Renew Sust Energ Rev. 2022 Feb 1;154:111808. DOI:10.1016/j.rser.2021.111808
  • Soni P, Sur A, Gaba VK. Experimental Investigation of silica-gel based composite adsorbent for adsorption refrigeration system. Therm Sci Eng Prog. 2022 Mar 1;29:101194. DOI:10.1016/j.tsep.2022.101194
  • Sahoo S. A comprehensive thermodynamic analysis and performance evaluation of a transcritical ejector expansion CO2 adsorption refrigeration system integrated with thermoelectric sub-cooler. J Supercrit Fluids. 2022 Mar 1;182:105517. DOI:10.1016/j.supflu.2022.105517
  • Yin G, Wang Y, Li M, et al. Experimental investigation on a two-bed adsorption refrigeration system with mass recovery. Appl Therm Eng. 2022 May 5;207:118152. DOI:10.1016/j.applthermaleng.2022.118152
  • Dadpour D, Deymi-Dashtebayaz M, Hoseini-Modaghegh A, et al. Proposing a new method for waste heat recovery from the internal combustion engine for the double-effect direct-fired absorption chiller. Appl Therm Eng. 2022 Nov 5;216:119114. DOI:10.1016/j.applthermaleng.2022.119114
  • Skrobek D, Krzywanski J, Sosnowski M, et al. Prediction of Sorption processes using the deep learning methods (long short-term memory). Energies. 2020;13:6601.
  • Krzywanski J, Sztekler K, Bugaj M, et al. Polska Akademia Nauk. Bull Pol Acad Sci Tech Sci. 2021;69(3). Warsaw. DOI:10.24425/bpasts.2021.137054
  • Sun Y, Sun P, Zhang Z, et al. Performance prediction for a marine diesel engine waste heat absorption refrigeration system. Energies. 2022 Sep 26;15(19):7070.
  • Kaewpradub S, Sanguanduean P, Katesuwan W, et al. Absorption refrigeration system using engine exhaust gas as an energy source. Case Stud Thermal Eng. 2018 Sep 1;12:797–804. DOI:10.1016/j.csite.2018.10.003
  • Xu J, Pan Q, Zhang W, et al. Tianshu Ge, Design and experimental study on a hybrid adsorption refrigeration system using desiccant coated heat exchangers for efficient energy utilization. Renewable Sustainable Energy Rev. 2022;169:112890. ISSN 1364-0321. DOI:10.1016/j.rser.2022.112890
  • Lemmini F, Errougani A. Experimentation of a solar adsorption refrigerator in Morocco. Renewable Energy. 2007;32:2629–2641.
  • Sur A, Das RK, Sah RP. Influence of initial bed temperature on bed performance of an adsorption refrigeration system. Therm Sci. 2018;22(6PartA):2583–2595.
  • Headley OS, Kothdiwala AF, McDoom IA. Charcoal–methanol adsorption refrigerator powered by a compound parabolic concentrating solar collector. Sol Energy. 1994;53(No. 2):191–197.
  • El-Sharkawy II, Saha BB, Koyama S, et al. Experimental investigation on activated carbon–ethanol pair for solar powered adsorption cooling applications. Int J Refrig. 2008;31:1407–1413.
  • Sakoda A, Suzuki M. Fundamental study on solar powered adsorption cooling system. J Chem Eng Jpn. 1984;17(1):52–57.
  • Saha BB, Boelman EC, Kashiwagi T. Computer simulation of a silica gel-water adsorption refrigeration cycle- the influence of operating conditions on cooling output and COP. ASHRAE Trans Res. 1995;101(2):348–355.
  • Chua HT, Ng KC, Malek A, et al. Modeling the performance of two-bed, silica gel–water adsorption chillers. Int J Refrigeration. 1999;22:194–204.
  • Rezk ARM, Al-Dadah RK. Physical and operating conditions effects on silica gel/water adsorption chiller performance. Appl Energy. 2012;89:142–149.
  • Zheng W, Worek WM, Nowakowski G. Effect of design and operating parameters on the performance of two-bed sorption heat pump systems. ASME J Energy Res Technol. 1995;117:67–74.
  • Davis SC, Diegel SW, Boundy RG Transportation energy data book. 28th ed. Oak Ridge National Laboratory, ORNL-6984; 2008.
  • Sur A, Das RK. Experimental investigation on waste heat driven activated carbon-methanol adsorption cooling system. J Braz Soc Mech Sci Eng. 2017;39(7):2735–2746.
  • Hamamoto Y, Alam KCA, Akisawa A, et al. Experimental study of heat and mass transfer in activated carbon fiber with adsorbing refrigerant, Proceedings of 21st IIR international congress of refrigeration, CD-ROM; Washington, DC, USA, 21 2003.
  • EI-Sharkawy II, Kuwahara K, Saha BB, et al. Experimental investigation of activated carbon fibres/ethanol pairs for adsorption cooling system application. Appl Therm Eng. 2006;26:859–865.
  • Meunier F. Second law analysis of a solid adsorption heat pump operating on reversible cascade cycles: application to the zeolite–water pair. J Heat Recovery Syst. 1985;5:133–141.
  • Meunier F, Douss N. Performance of adsorption heat pumps. Active carbon–methanol and zeolite–water pairs. ASHRAE Trans. 1990;2:267–274.
  • Tamainot Z, Critoph RE. Adsorption refrigerator using monolithic carbon–ammonia pair. Int J Refrig. 1997;20(2):146–155.
  • Gao P, Wei X, Wang L, et al. Compression-assisted decomposition thermochemical sorption energy storage system for deep engine exhaust waste heat recovery. Energy. 2022 Apr 1;244:123215. DOI:10.1016/j.energy.2022.123215.
  • Ranjan A, Kumar A, Kumar Roy A, et al. Python assisted numerical analysis of heat conduction for an orthotropic material. Adv Mater Process Technol. 2022;8:2014–2028.
  • Kai LC, Abdullah MZ, Ismail MA, et al. Enhancement of nanofluid heat transfer in a mini-tube using SiO2 nanoparticles. Adv Mater Process Technol. 2019;5(4):607–616.
  • Hamdy M, Askalany AA, Harby K, et al. An overview on adsorption cooling systems powered by waste heat from internal combustion engine. Renew Sust Energ Rev. 2015 Nov 1;51:1223–1234. DOI:10.1016/j.rser.2015.07.056
  • Ammar MAH, Benhaoua B, Balghouthi M. Simulation of tubular adsorber for adsorption refrigeration system powered by solar energy in sub-Sahara region of Algeria. Energy Convers Manag. 2015;106:31–40.
  • Mande S, Ghosh P, Kishore VVN, et al. (1997) Development of an advanced solar-hybrid adsorption cooling system for decentralized storage of agricultural products in India. Clima 2000, Brussels.
  • Chemical Society of Japan. Chemical handbook fundamentals. 2nd ed. Tokyo: Maruzen; 1975. pp. 892–902.
  • Zahran S, Makharza S, Atawneh M, et al. Understanding the adsorptive removal of bromophenol blue dye based graphene oxide nanoparticles as adsorbent. Adv Mater Process Technol. 2022;8:4280–4296.
  • Kosaraju S, Singh SK, Buddi T, et al. Evaluation and characterisation of ASS316L at sub-zero temperature. Adv Mater Process Technol. 2020;6(2):365–375.
  • Chakraborty M, Saleem M, Hasmi J. Wonder material graphene: properties, synthesis and practical applications. Adv Mater Process Technol. 2018;4(4):573–602.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.