55
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Dynamically propagating cracks in anisotropic plates subjected to hyperbolic thermal shock

& ORCID Icon
Pages 1888-1920 | Accepted 13 Apr 2023, Published online: 28 Apr 2023

References

  • Straughan B. Heat waves. New York: Springer; 2011.
  • Yu YJ, Hu W, Tian XG. A novel generalized thermoelasticity model based on memory-dependent derivative. Int J Eng Sci. 2014;81:123–134.
  • Xue Z, Tian X, Liu J. Thermal shock fracture of a crack in a functionally gradient half-space based on the memory-dependent heat conduction model. Appl Math Modell. 2020;80:840–858.
  • Wang JL, Li HF. Surpassing the fractional derivative: concept of the memory-dependent derivative. Comput Math Appl. 2011;62(3):1562–1567.
  • Saouma VE, Sikiotis ES. Stress intensity factors in anisotropic bodies using singular isoparametric elements. Eng Fract Mech. 1986;25(1):115–121.
  • Saouma VE, Ayari ML, Leavell DA. Mixed mode crack propagation in homogeneous anisotropic solids. Eng Fract Mech. 1987;27(2):171–184.
  • Boone TJ, Wawrzynek PA, Ingraffea AR. Finite element modelling of fracture propagation in orthotropic materials. Eng Fract Mech. 1987;26(2):185–201.
  • Pan JH, Li DM, Cai S, et al. A pure complex variable enrichment method for modeling progressive fracture of orthotropic functionally gradient materials. Eng Fract Mech. 2023;277:108984.
  • Wang C, Ping X, Wang X. An adaptive finite element method for crack propagation based on a multifunctional super singular element. Int J Mech Sci. 2023;247:108191.
  • Doblare M, Espiga F, Garcia L, et al. Study of crack propagation in orthotropic materials by using the boundary element method. Eng Fract Mech. 1990;37(5):953–967.
  • Aliabadi MH, Sollero P. Crack growth analysis in homogeneous orthotropic laminates. Compos Sci Technol. 1998;58(10):1697–1703.
  • García-Sánchez F, Zhang C, Sáez A. A two-dimensional time-domain boundary element method for dynamic crack problems in anisotropic solids. Eng Fract Mech. 2008;75(6):1412–1430.
  • Ghorashi SS, Mohammadi S, Sabbagh-Yazdi S-R. Orthotropic enriched element free Galerkin method for fracture analysis of composites. Eng Fract Mech. 2011;78(9):1906–1927.
  • Zhang J, Zhou G, Gong S, et al. Transient heat transfer analysis of anisotropic material by using element-free galerkin method. Int J Heat Mass Transf. 2017;84:134–143.
  • Zhang J-P, Wang S-S, Gong S-G, et al. Thermo-mechanical coupling analysis of the orthotropic structures by using element-free Galerkin method. Eng Anal Bound Elem. 2019;101:198–213.
  • Asadpoure A, Mohammadi S, Vafai A. Modeling crack in orthotropic media using a coupled finite element and partition of unity methods. Finite Elem Anal Des. 2006;42(13):1165–1175.
  • Asadpoure A, Mohammadi S. Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method. Int J Numer Method Biomed Eng. 2007;69:2150–2172.
  • Motamedi D, Mohammadi S. Dynamic analysis of fixed cracks in composites by the extended finite element method. Eng Fract Mech. 2010;77(17):3373–3393.
  • Bouhala L, Makradi A, Belouettar S. Thermo-anisotropic crack propagation by XFEM. Int J Mech Sci. 2015;103:235–246.
  • Mohtarami E, Baghbanan A, Hashemolhosseini H, et al. Fracture mechanism simulation of inhomogeneous anisotropic rocks by extended finite element method. Theor Appl Fract Mech. 2019;104:102359.
  • Ghorashi SS, Valizadeh N, Mohammadi S, et al. T-spline based XIGA for fracture analysis of orthotropic media. Comput Struct. 2015;147:138–146.
  • Gu J, Yu T, Lich LV, et al. Adaptive orthotropic XIGA for fracture analysis of composites. Composites. 2019;176:107259.
  • Zhang P, Hu X, Bui TQ, et al. Phase field modeling of fracture in fiber reinforced composite laminate. Int J Mech Sci. 2019;161–162:105008.
  • Zhang T, Yu T, Li Y, et al. Crack growth in anisotropic brittle and polycrystalline materials by adaptive phase field model using variable-node elements. Finite Elem Anal Des. 2023;217:103909.
  • Rao Q, Zhao C, Yi W. A new mixed-mode phase-field model for crack propagation of brittle rock. J Rock Mech Geotech Eng. 2023. DOI:10.1016/j.jrmge.2022.10.019
  • Nguyen MN, Nguyen NT, Truong TT, et al. Thermal-mechanical crack propagation in orthotropic composite materials by the extended four-node consecutive-interpolation element. Eng Fract Mech. 2019;206:89–113.
  • Zarrinzadeh H, Kabir MZ, Varvani-Farahani A. Static and dynamic fracture analysis of 3D cracked orthotropic shells using XFEM method. Theor Appl Fract Mech. 2020;108:102648.
  • Xiao G, Wen L, Tian R. Arbitrary 3D crack propagation with Improved XFEM: accurate and efficient crack geometries. Comput Methods Appl Mech Eng. 2021;377:113659.
  • Bakalakos S, Georgioudakis M, Papadrakakis M. Domain decomposition methods for 3D crack propagation problems using XFEM. Comput Methods Appl Mech Eng. 2022;402:115390.
  • Gajjar M, Pathak H. Elasto-plastic fracture modelling of 3-D metallic structure using XFEM. Adv Mater Process Technol. 2022;1–26. DOI:10.1080/2374068X.2022.2091187
  • Xiao G, Wen L, Tian R, et al. Improved XFEM (IXFEM): 3D dynamic crack propagation under impact loading. Comput Methods Appl Mech Eng. 2023;405:115844.
  • Bayat SH, Nazari MB. Thermal fracture analysis in orthotropic materials by XFEM. Theor Appl Fract Mech. 2021;112:102843.
  • Bayat SH, Nazari MB. Dynamic crack analysis in anisotropic media under wave-like thermal loading. Eur J Mech A Solids. 2023;99:104913.
  • Bayat SH, Nazari MB. XFEM analysis of cracked orthotropic media under non-classic thermal shock. J Therm Anal Calorim. 2022;147(23):13161–13175.
  • Wu KC. On the crack-tip fields of a dynamically propagating crack in an anisotropic elastic solid. Int J Fract. 1989;41(4):253–266.
  • Wu KC. Dynamic crack growth in anisotropic material. Int J Fract. 2000;106(1):1–12.
  • Atkinson C. The propagation of a brittle crack in anisotropic material. Int J Eng Sci. 1965;3(1):77–91.
  • Lee KH, Hawong J-S, Choi S-H. Dynamic stress intensity factors KI, KII and dynamic crack propagation characteristics of orthotropic material. Eng Fract Mech. 1996;53:119–140.
  • Gao X, Kang XW, Wang HG. Dynamic crack tip fields and dynamic crack propagation characteristics of anisotropic material. Theor Appl Fract Mech. 2009;51(1):73–85.
  • Motamedi D, Mohammadi S. Dynamic crack propagation analysis of orthotropic media by the extended finite element method. Int J Fract. 2009;161(1):21–39.
  • Motamedi D, Mohammadi S. Fracture analysis of composites by time independent moving-crack orthotropic XFEM. Int J Mech Sci. 2012;54(1):20–37.
  • Hetnarski RB, Eslami MR. Thermal Stresses – Advanced Theory and Applications. Dordrecht: Springer; 2009.
  • Lord H, Shulman Y. A generalized dynamical theory of thermoelasticity. J Mech Phys Solids. 1967;15(5):299–309.
  • Zamani A, Hetnarski RB, Eslami MR. Second sound in a cracked layer based on lord–Shulman theory. J Therm Stresses. 2011;34(3):181–200.
  • Esmati V, Nazari MB, Rokhi MM. Implementation of XFEM for dynamic thermoelastic crack analysis under non-classic thermal shock. Theor Appl Fract Mech. 2018;95:42–58.
  • Zarmehri NR, Nazari MB, Rokhi MM. XFEM analysis of a 2D cracked finite domain under thermal shock based on Green-Lindsay theory. Eng Fract Mech. 2018;191:286–299.
  • Shahsavan M, Nazari MB, Rokhi MM. Dynamic analysis of cracks under thermal shock considering thermoelasticity without energy dissipation. J Therm Stresses. 2019;42(5):607–628.
  • Nazari MB, Rokhi MM. Evaluation of SIFs for cracks under thermal impact based on Green-Naghdi theory. Theor Appl Fract Mech. 2020;107:102557.
  • Bayat SH, Nazari MB. Dynamic crack propagation under generalized thermal shock based on Lord-Shulman model. Theor Appl Fract Mech. 2022;122:103557.
  • Cahill L, Natarajan S, Bordas S, et al. An experimental/numerical investigation into the main driving force for crack propagation in unidirectional fibre-reinforced composite laminae. Compos Struct. 2014;107:119–130.
  • Réthoré J, Gravouil A, Combescure A. An energy-conserving scheme for dynamic crack growth using the eXtended finite element method. Int J Numer Method Biomed Eng. 2005;63(5):631–659.
  • Kaw AK. Mechanics of composite materials. 2nd ed. Boca Raton: CRC Press; 2005.
  • Mohammadi S. XFEM Fracture Analysis of Composites. New Delhi: Wiley; 2012.
  • Rice JR. A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech. 1968;35(2):379–386.
  • Kim J-H, Paulino GH. The interaction integral for fracture of orthotropic functionally graded materials: evaluation of stress intensity factors. Int J Solids Struct. 2003;40(15):3967–4001.
  • Dag S. Thermal fracture analysis of orthotropic functionally graded materials using an equivalent domain integral approach. Eng Fract Mech. 2006;73:2802–2828.
  • Dongye C, Ting TCT. Explicit expressions of Barnett-Lothe tensors and their associated tensors for orthotropic materials. Quarterly of Applied Mathematics. 1989;47(4):723–734.
  • Bargmann S, Steinmann P. Theoretical and computational aspects of non-classical thermoelasticity. Comput Methods Appl Mech Eng. 2006;196(1–3):516–527.
  • Chen T-C, Weng C-I. Generalized coupled transient thermoelastic plane problems by Laplace transform/finite element method. J Appl Mech. 1988;55(2):377–382.
  • Tamma KK, Railkar SB. Evaluation of thermally induced non-Fourier stress wave disturbances via tailored hybrid transfinite element formulations. Comput Struct. 1990;34(1):5–16.
  • Tehrani PH, Eslami MR. Boundary element analysis of coupled thermoelasticity with relaxation times in finite domain. AIAA Stud J. 2000;38(3):534–541.
  • Hosseini SM, Sladek J, Sladek V. Two dimensional transient analysis of coupled non-Fick diffusion–thermoelasticity based on Green–Naghdi theory using the meshless local Petrov–Galerkin (MLPG) method. Int J Mech Sci. 2014;82:74–80.
  • Newmark NM. A method of computation for structural dynamics. J Eng Mech Div. 1959;85(3):67–94.
  • Tamma KK, Namburu RR. An effective finite element modeling/analysis approach for dynamic thermoelasticity due to second sound effects. Computational Mechanics. 1992;9(2):73–84.
  • Li C, Guo H. Time-domain finite element analysis to nonlinear transient responses of generalized diffusion-thermoelasticity with variable thermal conductivity and diffusivity. Int J Mech Sci. 2017;131-132:234–244.
  • Yaser K, Eslami MR. A GDQ approach to thermally nonlinear generalized thermoelasticity of disks. J Therm Stresses. 2017;40:121–133.
  • Chopra AK. Dynamics of Structures. Berkeley: University of California , Pearson; 2017.
  • Nejati M, Bahrami B, Ayatollahi MR, et al. On the anisotropy of shear fracture toughness in rocks. Theor Appl Fract Mech. 2021;113:102946.
  • Gdoutos E. Fracture mechanics: an introduction. Dordrecht: Springer; 2005.
  • Rayleigh L. On waves propagated along the plane surface of an elastic solid. Proc London Math Soc. 1885;17(1):4–11.
  • Albuquerque EL, Sollero P, Aliabadi MH. Dual boundary element method for anisotropic dynamic fracture mechanics. Int J Numer Method Biomed Eng. 2004;59(9):1187–1205.
  • Albuquerque EL, Sollero P, Aliabadi MH. The boundary element method applied to time dependent problems in anisotropic materials. Int J Solids Struct. 2002;39(5):1405–1422.
  • Albuquerque EL, Sollero P, Fedelinski P. Dual reciprocity boundary element method in Laplace domain applied to anisotropic dynamic crack problems. Comput Struct. 2003;81(17):1703–1713.
  • Lee D, Tippur H, Kirugulige M, et al. Experimental study of dynamic crack growth in unidirectional graphite/epoxy composites using digital image correlation method and high-speed photography. J Compos Mater. 2009;43(19):2081–2108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.