84
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Investigating the compression and fretting wear behaviour of FDM printed PLA samples for bone fixation

, ORCID Icon, &
Pages 2045-2061 | Accepted 18 Apr 2023, Published online: 27 Apr 2023

References

  • Jin W, Chu PK. Orthopedic implantsVols. 1–3. Elsevier Inc.; 2019. DOI:10.1016/B978-0-12-801238-3.10999-7
  • Praveenkumar K, Swaroop S, Manivasagam G. Effect of multiple laser peening on microstructural, fatigue and fretting-wear behaviour of austenitic stainless steel. Surf Coat Technol. 2022;443:128611.
  • Uva Narayanan C, Suya Prem Anand P. Selective laser melting and post-processing stages for enhancing the material behavior of cobalt- chromium alloy in total hip replacement: a review. Mater Manuf Process. 2022;00:1–21.
  • U.S. Food & Drug Administration. Use of International Standard ISO 10993-1. “Biological evaluation of medical devices-Part 1: evaluation and testing within a risk management process” guidance for industry and Food and Drug Administration staff. US Dep Heal Hum Serv Food Drug Adm. 2020:1–68.
  • Dos Santos CT, Barbosa C, de J MM, et al. Fretting corrosion tests on orthopedic plates and screws made of ASTM F138 stainless steel. Rev Bras Eng Biomed. 2015;31(2):169–175.
  • Winzer N, Atrens A, Song G, et al. A critical review of the Stress Corrosion Cracking (SCC) of magnesium alloys. Adv Eng Mater. 2005;7(8):659–693. DOI:10.1002/adem.200500071
  • Lhotka C, Szekeres T, Steffan I. Klaus Zhuber d KZ a. Four‐year study of cobalt and chromium blood levels in patients managed with.Pdf. J Orthop Res. 2003 21;21:189–195. DOI:10.1016/S0736-0266(02)00152-3
  • Ma Z, Gao C, Gong Y, et al. Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor. Biomaterials. 2005;26:1253–1259.
  • Brundavanam S, Eddy G, Poinern J, et al. Growth of Flower-Like Brushite Structures on Magnesium Substrates and Their Subsequent Low Temperature Transformation to Hydroxyapatite. Am J Biomed Eng. 2014;4:79–87.
  • Prakasam M, Locs J, Salma-Ancane K, et al. Biodegradable Materials and Metallic Implants—A Review. J Funct Biomater. 2017;8(4):8.
  • Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, et al. Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Adv Drug Deliv Rev. 2016;107:333–366.
  • Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials. 1996;17(2):93–102.
  • Lu D, Zhang X, Zhou T, et al. Biodegradable poly (lactic acid) copolymers. Prog Chem. 2008;20:339–350.
  • Uhthoff HK, Poitras P, Backman DS. Internal plate fixation of fractures: short history and recent developments. J Orthop Sci. 2006;11(2):118–126.
  • Tilton M, Lewis GS, Bok Wee H, et al. Additive manufacturing of fracture fixation implants: design, material characterization, biomechanical modeling and experimentation. Addit Manuf. 2020;33:101137.
  • Gebhardt A. Understanding Additive Manufacturing. Underst Addit Manuf. 2011. I–IX. DOI:10.3139/9783446431621.fm
  • Dilberoglu UM, Gharehpapagh B, Yaman U, et al. The Role of Additive Manufacturing in the Era of Industry 4.0. Procedia Manuf. 2017;11:545–554.
  • Delgado Camacho D, Clayton P, O’Brien WJ, et al. Applications of additive manufacturing in the construction industry – a forward-looking review. Autom Constr. 2018;89:110–119.
  • Lipton JI, Cutler M, Nigl F, et al. Additive manufacturing for the food industry. Trends Food Sci Technol. 2015;43(1):114–123.
  • Harun WSW, Manam NS, Kamariah MSIN, et al. A review of powdered additive manufacturing techniques for Ti-6al-4v biomedical applications. Powder Technol. 2018;331:74–97.
  • Lee JY, An J, Chua CK. Fundamentals and applications of 3D printing for novel materials. Appl Mater Today. 2017;7:120–133.
  • Moradi M, Aminzadeh A, Rahmatabadi D, et al. Experimental investigation on mechanical characterization of 3D printed PLA produced by fused deposition modeling (FDM). Mater Res Express. 2021 8;8(3):035304. DOI:10.1088/2053-1591/abe8f3
  • Meiabadi MS, Moradi M, Karamimoghadam M, et al. Modeling the producibility of 3d printing in polylactic acid using artificial neural networks and fused filament fabrication. Polymers. 2021;13:1–21.
  • Moradi M, Aminzadeh A, Rahmatabadi D, et al. Statistical and Experimental Analysis of Process Parameters of 3D Nylon Printed Parts by Fused Deposition Modeling: response Surface Modeling and Optimization. J Mater Eng Perform. 2021;30(7):5441–5454.
  • Wang X, Jiang M, Zhou Z, et al. 3D printing of polymer matrix composites: a review and prospective. Compos Part B Eng. 2017;110:442–458.
  • Mohammed MI, Das A, Gomez-Kervin E, et al. Ecoprinting: investigating the use of 100% recycled Acrylonitrile Butadiene Styrene (ABS) for Additive Manufacturing. Solid Free Fabr 2017 Proc 28th Annu Int Solid Free Fabr Symp - An Addit Manuf Conf SFF, United Kingdom. Vol 2017. 2020. p. 532–542.
  • Moradi M, Beygi R, Mohd Y, et al. 3D Printing of Acrylonitrile Butadiene Styrene by Fused Deposition Modeling: artificial Neural Network and Response Surface Method Analyses. J Mater Eng Perform. 2022;32(4):2016–2028.
  • Bochnia J, Blasiak M, Kozior T. A comparative study of the mechanical properties of fdm 3d prints made of pla and carbon fiber-reinforced pla for thin-walled applications. Materials. 2021;14(22):14.
  • Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications — a comprehensive review. Adv Drug Deliv Rev. 2016;107:367–392.
  • Anders Södergard MS. Industrial production of high molecular weight poly (lactic acid). Bio-Based Plast Mater Appl. 2010;27–41.
  • Leite M, Varanda A, Ribeiro AR, et al. Mechanical properties and water absorption of surface modified ABS 3D printed by fused deposition modelling. Rapid Prototyp J. 2018;24(1):195–203.
  • Khosravani MR, Schüürmann J, Berto F, et al. On the post-processing of 3d-printed abs parts. Polymers. 2021;13:1–13.
  • Kozior T, Mamun A, Trabelsi M, et al. Quality of the surface texture and mechanical properties of FDM printed samples after thermal and chemical treatment. Stroj Vestnik/J Mech Eng. 2020;66:105–113.
  • Jayanth N, Jaswanthraj K, Sandeep S, et al. Effect of heat treatment on mechanical properties of 3D printed PLA. J Mech Behav Biomed Mater. 2021;123:104764.
  • Vouyiouka SN, Papaspyrides CD. 4.34 - Mechanistic Aspects of Solid-State Polycondensation. Matyjaszewski K, Möller MBT-PSACR editors. Amsterdam:Elsevier. 2012pp. 857–874. DOI:10.1016/B978-0-444-53349-4.00126-6
  • Wach RA, Wolszczak P, Adamus-Wlodarczyk A. Enhancement of Mechanical Properties of FDM-PLA Parts via Thermal Annealing. Macromol Mater Eng. 2018;303(9):1–9.
  • Alafaghani A, Qattawi A, Alrawi B, et al. Experimental Optimization of Fused Deposition Modelling Processing Parameters: a Design-for-Manufacturing Approach. Procedia Manuf. 2017;10:791–803.
  • Çevik Ü, Kam M. Review Article a Review Study on Mechanical Properties of Obtained Products by FDM Method and Metal/Polymer Composite Filament Production. J Nanomater. 2020;2020:9.
  • Simmons H, Tiwary P, Colwell JE, et al. Improvements in the crystallinity and mechanical properties of PLA by nucleation and annealing. Polym Degrad Stab. 2019;166:248–257.
  • Zhai W, Ko Y, Zhu W, et al. A study of the crystallization, melting, and foaming behaviors of polylactic acid in compressed CO2. Int J Mol Sci. 2009;10(12):5381–5397.
  • Diani J, Gall K, Gall K. Finite Strain 3D Thermoviscoelastic Constitutive Model. Society. 2006;2006(4):1–10.
  • Wu D, Spanou A, Diez-Escudero A, et al. 3D-printed PLA/HA composite structures as synthetic trabecular bone: a feasibility study using fused deposition modeling. J Mech Behav Biomed Mater. 2020;103:103608.
  • Sharifabad SS, Derazkola HA, Esfandyar M, et al. Mechanical properties of HA@Ag/PLA nanocomposite structures prepared by extrusion-based additive manufacturing. J Mech Behav Biomed Mater. 2021;118:104455.
  • Srithep Y, Nealey P, Turng LS. Effects of annealing time and temperature on the crystallinity and heat resistance behavior of injection-molded poly(lactic acid). Polym Eng Sci. 2013;53(3):580–588.
  • Syrlybayev D, Zharylkassyn B, Seisekulova A, et al. Optimisation of strength properties of FDM printed parts—A critical review. Polymers. 2021 13;13(10):1587. DOI:10.3390/polym13101587
  • Raheem Z. (PDF) Designation: d695 − 15 Standard Test Method for Compressive Properties of Rigid Plastics 1 2019. DOI:10.1520/D0695-15
  • Zhang P, Hu Z, Xie H, et al. Friction and wear characteristics of polylactic acid (PLA) for 3D printing under reciprocating sliding condition. Ind Lubr Tribol. 2020;72(4):533–539.
  • Eddy Jai Poinern G, Brundavanam S, Fawcett D. Biomedical Magnesium Alloys: a Review of Material Properties, Surface Modifications and Potential as a Biodegradable Orthopaedic Implant. Am J Biomed Eng. 2013;2(6):218–240.
  • Dan MJ, Cross MJ, Roger GJ, et al. 7 - Cementless fixation techniques and problems. In: PBT-JRT R. (Third E, editor. Woodhead Publ. Ser. Biomater., Woodhead Publishing. 2021pp. 185–211. DOI:10.1016/B978-0-12-821082-6.00001-7
  • Murmu UK, Adhikari J, Naskar A, et al. Mechanical Properties of Crystalline and Semicrystalline Polymer Systems. Hashmi MSJBT-E of MP and P, editor. Oxford:Elsevier. 2022pp. 917–927. DOI:10.1016/B978-0-12-820352-1.00248-0
  • Guduru KK, Srinivasu G. Effect of post treatment on tensile properties of carbon reinforced PLA composite by 3D printing. Mater Today Proc. 2020;33:5403–5407.
  • Campo EA. 3 - Thermal Properties of Polymeric Materials. In: Campo EABT-S of PM, editor. Plast. Des. Libr. Norwich, NY: William Andrew Publishing; 2008. pp. 103–140. DOI:10.1016/B978-081551551-7.50005-X
  • Wang W, Zhang B, Li M, et al. 3D printing of PLA/n-HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering. Compos Part B Eng. 2021;224:109192.
  • Mei H, Yin X, Zhang J, et al. Compressive Properties of 3D Printed Polylactic Acid Matrix Composites Reinforced by Short Fibers and SiC Nanowires. Adv Eng Mater. 2019 21;21(5):1800539. DOI:10.1002/adem.201800539
  • Wang JL, Xu JK, Hopkins C, et al. Biodegradable Magnesium-Based Implants in Orthopedics—A General Review and Perspectives. Adv Sci. 2020;7(8):7.
  • Naujokat H, Seitz JM, Açil Y, et al. Osteosynthesis of a cranio-osteoplasty with a biodegradable magnesium plate system in miniature pigs. Acta Biomater. 2017;62:434–445.
  • Davis L. Strength of Human Bones. Body Phys Motion Metab. 2020;7.1.1–7.1.4.
  • Qin X. Contact Strength of Material. Strength Mater. 2020;1–11. DOI:10.5772/intechopen.90228
  • Song F, Wang Q, Wang T. The effects of crystallinity on the mechanical properties and the limiting PV (pressure×velocity) value of PTFE. Tribol Int. 2016;93:1–10.
  • Pu J, Wu D, Zhang Y, et al. An experimental study on the fretting corrosion behaviours of three material pairs at modular interfaces for hip joint implants. Lubricants. 2021;9:1–14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.