177
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Prediction of Weld Geometry in Laser Welding by Numerical Simulation & Artificial Neural Networking

ORCID Icon, , &
Accepted 27 Apr 2023, Published online: 11 May 2023

References

  • Katayama S. Introduction: fundamentals of laser welding. In: Seiji Katayama, editor. Handbook of laser welding technologies. Cambridge, UK: Woodhead Publishing; 2013. p. 3–16 .
  • Dawes CT, editor. Laser welding: a practical guide. Cambridge, UK: Woodhead Publishing; 1992 .
  • Tsirkas SA, Papanikos P, Kermanidis T. Numerical simulation of the laser welding process in butt-joint specimens. J Mater Process Technol. 2003;134(1):59–69.
  • Dagli CH, Ed. Artificial neural networks for intelligent manufacturing. Dordrecht, The Netherlands: Springer Science & Business Media; 2012.
  • Nosrati HG, Yazdani NM, Khoran M. Double-sided friction stir welding of AA 2024-T6 joints: mathematical modeling and optimization. CIRP J Manuf Sci Technol. 2022;36:1–11.
  • Gao XL, Zhang LJ, Liu J, et al. Effects of weld cross-section profiles and microstructure on properties of pulsed Nd: yAG laser welding of Ti6Al4V sheet. Int J Adv Manuf Technol. 2014;72:895–903.
  • Bijivemula NR, Padmanabhan G. Experimental investigation on similar and dissimilar alloys of stainless steel joints by laser beam welding. Adv Mater Process Technol. 2021;8:1–16.
  • Kuo TY, Lin YT. Effects of shielding gas flow rate and power waveform on Nd: yAG Laser welding of A5754-O Aluminium alloy. Mater Trans. 2006;47:1365–1373.
  • Narsimhachary D, Bathe RN, Padmanabham G, et al. Influence of temperature profile during laser welding of aluminium alloy 6061 T6 on microstructure and mechanical properties.’. Mater Manuf Processes. 2014;29:948–953.
  • Xiao R, Zhang X. Problems and issues in laser beam welding of Aluminum–Lithium alloys. J Manuf Processes. 2014;16:166–175.
  • Borrisutthekul R, Miyashita Y, Mutoh Y. Dissimilar material laser welding between magnesium alloy AZ31B and aluminum alloy A5052-O. Sci Technol Adv Mater. 2005;6(2):199.
  • Moraitis GA, Labeas GN. Residual stress and distortion calculation of laser beam welding for aluminum lap joints. J Mater Process Technol. 2008;198(1–3):260–269.
  • Courtois M, Carin M, LeMasson P, et al. (2012). Keyhole formation during spot laser welding: heat and fluid flow modeling in a 2D axisymmetric configuration. In COMSOL Conference, Milan.
  • Lecoanet A, Ivey DG, Henein H. Simulation of the temperature profile during welding with COMSOL multiphysics® software using Rosenthal’s approach. In Excerpt from the Proceedings of the 2014 COMSOL, Boston, Massachusetts, United States of America. 2014.
  • Ai Y, Liu X, Huang Y, et al. Investigation of dissimilar fiber laser welding of low carbon steel and stainless steel by numerical simulation. J Laser Appl. 2021;33(1):012046.
  • Ai Y, Liu X, Huang Y, et al. The analysis of asymmetry characteristics during the fiber laser welding of dissimilar materials by numerical simulation. Int J Adv Manuf Technol. 2022;1–9. DOI:10.1007/s00170-021-08312-8
  • Ai Y, Cheng J, Yu L, et al. Numerical investigation of weld bead porosity reduction in the oscillating laser T-joint welding of aluminum alloy. J Laser Appl. 2022;34(1):012029.
  • Satyanarayana G, Narayana KL, Rao BN. Incorporation of Taguchi approach with CFD simulations on laser welding of spacer grid fuel rod assembly. Mater Sci Eng B. 2021;269:115182.
  • Acherjee B, Mondal S, Tudu B, et al. Application of artificial neural network for predicting weld quality in laser transmission welding of thermoplastics. Appl Soft Comput. 2011;11(2):2548–2555.
  • Maji K, Pratihar DK, Nath AK. Laser forming of a dome shaped surface: experimental investigations, statistical analysis and neural network modeling. Opt Lasers Eng. 2014;53:31–42.
  • Rong Y, Zhang Z, Zhang G, et al. Parameters optimization of laser brazing in crimping butt using Taguchi and BPNN-GA. Opt Lasers Eng. 2015;67:94–104.
  • Sathiya P, Panneerselvam K, Abdul Jaleel MY. Optimization of laser welding process parameters for super austenitic stainless steel using artificial neural networks and genetic algorithm. Mater Des. 2012;36:490–498.
  • Kumar A, Chauhan V, Bist AS. Role of artificial neural network in welding technology: a survey. Int J Comput Appl. 2013;67(1):32–37.
  • Chang WS, Na SJ. Prediction of laser-spot-weld shape by numerical analysis and neural network. Metall and Materi Trans B. 2001;32:723–731.
  • Akbari M, Saedodin S, Panjehpour A, et al. Numerical simulation and designing artificial neural network for estimating melt pool geometry and temperature distribution in laser welding of Ti6Al4V alloy. Optik. 2016;127(23):11161–11172.
  • Miller WS, Zhuang L, Bottema J, et al. Recent development in aluminium alloys for the automotive industry.’. Mater Sci Eng A. 2000;280:37–49.
  • Ghaini FM, Sheikhi M, Torkamany MJ, et al. The relation between liquation and solidification cracks in pulsed laser welding of 2024 Aluminium alloy.’. Mater Sci Eng A. 2009;519:167–171.
  • Chandla NK, Kant S, Goud MM. A review on mechanical properties of stir cast Al-2024 metal matrix composites. Adv Mater Process Technol. 2022;1–22. DOI:10.1080/2374068X.2022.2106670
  • Dey U, Duggirala A, Acherjee B, and Mitra S. Numerical Analysis of Conduction Mode Laser Welding of Aluminium 2024 Alloy in Lap Joint Configuration. In: Dikshit, MK, Soni, A, Davim, JP , editor. Advances in Manufacturing Engineering. Lecture Notes in Mechanical Engineering Lecture Notes in Mechanical Engineering. Springer, Singapore; 2023:163–173. 978-981-19-4208-2. DOI:10.1007/978-981-19-4208-2_12
  • Mohan A, Ceglarek D, Auinger M. Numerical modelling of thermal quantities for improving remote laser welding process capability space with consideration to beam oscillation. Int J Adv Manuf Technol. 2022;123(3):761–782.
  • Bachmann M, Avilov V, Gumenyuk A, et al. About the influenceof a steady magnetic field on weld pool dynamics in partial penetration highpower laser beam welding of thick aluminium parts. Int J Heat Mass Trans. 2013;60:309–321.
  • Esfahani MN, Coupland J, Marimuthu S. Numerical simulation of alloy composition in dissimilar laser welding. J Mater Process Technol. 2015;224:135–142.
  • Marimuthu S, Eghiio RM, Pinkerton AJ, et al. Coupled computational fluid dynamic and Finite element multiphase modeling of laser weld bead formation and joint strength. J Manuf Sci Eng 2013;135. DOI: 10.1115/1.4023240011004-1
  • Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources. Metall trans B. 1984;15(2):299–305.
  • Li Z, Yu G, He X, et al. Analysis of surface tension driven flow and solidification behavior in laser linear welding of stainless steel. Opt Laser Technol. 2020;123:105914.
  • Ai Y, Zheng K, Shin YC, et al. Analysis of weld geometry and liquid flow in laser transmission welding between polyethylene terephthalate (PET) and Ti6Al4V based on numerical simulation. Opt Laser Technol. 2018;103:99–108.
  • Artinov A, Bachmann M, Rethmeier M. Equivalent heat source approach in a 3D transient heat transfer simulation of full-penetration high power laser beam welding of thick metal plates. Int J Heat & Mass Trans. 2018;122:1003–1013.
  • Brandes EA, Brook GB, Eds. Smithells metals reference book. Jordan Hill, Oxford, UK: Elsevier; 2013.
  • Sada SO, Eyenubo OJ, Atikpo E, et al. Evaluation of neural network parameters in the prediction of AISI 1050 steel machining performance. Adv Mater Process Technol. 2022;1–12. DOI:10.1080/2374068X.2022.2119715

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.