141
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Development of Novel Reprocessed Composite Materials from Municipal Solid Waste – a Review

, ORCID Icon, , , , , , , , & show all
Pages 2582-2606 | Accepted 26 May 2023, Published online: 12 Jun 2023

References

  • Imam AUK, Banerjee UK. Urbanisation and greening of Indian cities: problems, practices, and policies. Ambio. 2016 May; 45(4): 442–457. DOI:10.1007/s13280-015-0763-4
  • Ali E. Urbanisation in India: causes, growth, trends, patterns, consequences & remedial Measures. 2020. DOI:10.13140/RG.2.2.19007.05284
  • Mekonnen GB, dos Muchangos LS, Ito L, et al. Analyzing key drivers for a sustainable waste management system in Ethiopia: an interpretive structural modeling approach. Environ Chall. 2022 Aug;8:100556. DOI:10.1016/j.envc.2022.100556
  • Maji S, Dwivedi DH, Singh N, et al. Agricultural waste: its impact on environment and management approaches. emerging eco-friendly green technologies for wastewater treatment. R. N. Bharagava, Ed. Springer Singapore;Singapore: 2020pp. 329–351. DOI:10.1007/978-981-15-1390-9_15
  • Griffiths AJ, Williams KP, Owen N. Engineering value recovery from municipal solid waste. Proc Inst Mech Eng Part C J Mech Eng Sci. 2010 Mar; 224(3): 559–570. DOI:10.1243/09544062JMES1857
  • Mojumdar A, Deka J. Recycling agro-industrial waste to produce amylase and characterizing amylase–gold nanoparticle composite. Int J Recycl Org Waste Agric. 2019 Dec; 8(1): 263–269. DOI:10.1007/s40093-019-00298-4
  • Pandey A, Sahu R, Tyagi R. A research study on waste segregation at source is the key in municipal solid waste management in delhi. Indian J Sci Res. 2019; 18(2): 255–259.
  • Mor RS, Sangwan KS, Singh S, et al. E-waste management for environmental sustainability: an exploratory study. Procedia CIRP. 2021 Jan;98:193–198. DOI:10.1016/j.procir.2021.01.029
  • Grant K, Goldizen FC, Sly PD, et al. Health consequences of exposure to e-waste: a systematic review. Lancet Glob Health. 2013 Dec;1(6):e350–361.
  • Senophiyahmary J, Thirumoorthy M. Inventorisation of E-Waste and developing a policy – bulk consumer perspective. Procedia Environ Sci. 2016 Dec;35:643–655. DOI:10.1016/j.proenv.2016.07.058
  • Banerjee T, Srivastava DR, Hung Y-T. Plastics waste management in India: an integrated solid waste management approach. Handbook of Environment and Waste Management; 2014. p. 1029–1060. DOI:10.1142/9789814449175_0017.
  • Dutta A, Jinsart W. Waste generation and management status in the fast-expanding Indian cities: a review. J Air Waste Manag Assoc. 2020 May; 70(5): 491–503. DOI:10.1080/10962247.2020.1738285
  • Mishra A, Mishra S, Tiwari A. Assessment of Municipal Solid Waste Management for Better-Quality Public Health and Environmental Sustainability in the Freetown Metropolitan City in Sierra Leone. 2013 Jan;2:2321–9637.
  • Syamala Devi K, Swamy AVVS, Hema Krishna R. Studies on the solid waste collection by rag pickers at greater Hyderabad Municipal Corporation, India. Int Res J Environ Sci. 2014;3(1):13–22.
  • Joseph K, “Perspectives of solid waste management in India.”
  • Nandan A, Yadav BP, Baksi S, et al. Recent scenario of solid waste management in India. World Sci News. 2017;66:56–74.
  • Siddiqui FZ, Faruqi MHZ, Pandey S, et al. Development of models for the prediction of energy content of fresh municipal solid waste from an unsecured landfill in India. Waste Manag Res. 2021 Aug; 39(8): 1101–1111. DOI:10.1177/0734242X20985602
  • Sharholy M, Ahmad K, Mahmood G, et al. Analysis of municipal solid waste management systems in Delhi - a review. Book Proc Second Int Congr Chem Environ. 2005 Jan; 28: 773–777.
  • CPCB | Central Pollution Control Board. https://cpcb.nic.in/ (accessed Jan. 24, 2022).
  • Kansal A, Kansal A. Solid waste management strategies for India. Indian J Environ Prot. 2002 Jan;22:444–448.
  • Thusyanthan I, Madabhushi G, Singh S, et al. Seismic behaviour of Municipal Solid Waste (MSW) Landfills. 2004;51(14).
  • Joshi R, Ahmed S, Ng CA. Status and challenges of municipal solid waste management in India: a review. Cogent Environ Sci. 2016 Dec; 2(1): 1139434. DOI:10.1080/23311843.2016.1139434
  • Gupta N, Yadav KK, Kumar V. A review on current status of municipal solid waste management in India. J Environ Sci. 2015 Aug;37:206–217. DOI:10.1016/j.jes.2015.01.034
  • Kumar A, Singh S. Domestic solid waste generation – a case study of Semi- Urban Area of Kathua District, Jammu. J & K, India. 2022; 3(5): 1–5. Accessed: Jan. 25, 2022.
  • Kumari S. Indian scenario of municipal solid waste management. Int J Sci Eng. 2018;3(4):10.
  • Kharvel Annepu R. WtERT | Waste-to-Energy Research and Technology Council. WtERT | Waste-to-Energy Research and Technology Council, 2012. https://gwcouncil.org/m-s-thesis-sustainable-solid-waste-management-in-india/ (accessed Oct. 7, 2021).
  • Sharma K, Jain S. Overview of municipal solid waste generation, composition, and management in India. J Environ Eng US. 2019 Mar;145(3). doi:10.1061/(ASCE)EE.1943-7870.0001490.
  • EPA OU. Sustainable materials management: non-hazardous materials and waste management hierarchy. Sep. 11, 2015. https://www.epa.gov/smm/sustainable-materials-management-non-hazardous-materials-and-waste-management-hierarchy (accessed Oct. 08, 2021).
  • Dasanayaka S, Wedawatta G. Economic and financial feasibility risks of power generation through municipal solid wastes to reduce environmental impacts, a case study based on Western Province in Sri Lanka. HttpiasirnetIJETCASpapersIJETCAS14-326pdf, 2014, Accessed: Oct. 8, 2021. [Online]. Available: http://dl.lib.uom.lk/handle/123/11313
  • United Nations University (UNU). ISWA: the Global E-Waste Monitor 2020. https://www.iswa.org/home/news/news-detail/article/-21c8325490/109/ (accessed Jan. 22, 2021).
  • Dwivedi SP, Maurya M, Saxena A, et al. Synthesis and characterization of spent alumina catalyst and grinding sludge reinforced aluminium-based composite material. Proc Inst Mech Eng Part C J Mech Eng Sci. 2021 Dec; 236(10): 5523–5534. DOI:10.1177/09544062211061451
  • Akampumuza O, Wambua P, Ahmed A, et al. A review of the applications of bio composites in the automotive industry. Polym Compos. 2015 Nov; 38(11): 2553–2569. DOI:10.1002/pc.23847
  • Banerjee R, Pandey A. Bio-industrial applications of sugarcane bagasse: a technological perspective. Int Sugar J. 2002 Feb;104:64.
  • Phonphuak N, Chindaprasirt P. Types of waste, properties, and durability of pore-forming waste-based fired masonry bricks. eco-efficient masonry bricks and blocks: design. Properties And Durability. 2015;1(1):103–127.
  • Chand N, Fahim M. Bamboo reinforced polymer composites. 2008;162–179.
  • Keller EA, King HM. Introduction to environmental geology‬. 2008. https://scholar.google.com/citations?view_op=view_citation&hl=en&user=NWqV3kwAAAAJ&cstart=20&pagesize=80&citation_for_view=NWqV3kwAAAAJ:9ZlFYXVOiuMC (accessed Oct 08, 2021.
  • Orozco A, Al-Muhtaseb A, Albadarin A, et al. Acid-catalyzed hydrolysis of cellulose and cellulosic waste using a microwave reactor system. RSC Adv. 2011 Oct; 1(5): 839–846. DOI:10.1039/c1ra00329a
  • GAYATRI MANU A 12-year-old from bhopal shows us how we can recycle thermocol using nail-polish remover. The Better India, Aug. 23, 2016. https://www.thebetterindia.com/65874/anakta-prabhu-thermocol-recycling-foam/ (accessed Apr. 28, 2021).
  • Mmereki D, Li B, Baldwin A, et al. The generation, composition, collection, treatment and disposal system, and Impact of E-Waste. IntechOpen: 2016. DOI:10.5772/61332
  • Jain N. E-Waste - sources, composition, effects, treatment and disposal system. electricalfundablog.com, Aug. 4, 2020. https://electricalfundablog.com/e-waste-electronic-waste-sources-composition/ (accessed Oct. 08, 2021).
  • Baldé K, Wagner M, Magalini F, et al. E-Waste quantification - United Nations University. 2011. https://unu.edu/projects/e-waste-quantification.html#outline (accessed Oct. 8, 2021).
  • Xiong X, Ma L, Zhang Z, et al. Mechanical, morphology, crystallisation and melting behaviour of polypropylene composites reinforced by non-metals recycled from waste printed circuit boards. Plast Rubber Compos. 2021 Apr;50(4):162–171.
  • Mihai F-C. E-Waste in transition - from pollution to resource; 2016. p. 32.
  • Nnorom I, Osibanjo O, Ogwuegbu MOC. Global disposal strategies for waste cathode ray tubes. ResouConserv Recycl. 2011 Jan; 55(3): 275–290. DOI:10.1016/j.resconrec.2010.10.007
  • Vidyadhar A. A review of technology of metal recovery from electronic waste. F.-C. Mihai, Ed. Croatia;InTech. 2016 Accessed: Oct. 8, 2021;pp. 121–158. Online. Available 10.5772/60487
  • Wills BA, Finch JA. Wills’ mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. 2016. p. 62.
  • Samuila A, Dascalescu L, Calin L, et al. Recent researches in electrostatic separation technologies for the recycling of waste electric and electronic equipment. 2020;2218(1):1–9.
  • Bittner JD, Hrach FJ, Gasiorowski SA, et al. Triboelectric bELT SEPARATOR FOR BENEFICIATION OF FINE MINERALs. Procedia Eng. 2014 Jan;83:122–129.
  • Otunniyi I, Vermaak MKG. Investigation of froth flotation for beneficiation of printed circuit board comminution fines. Miner Eng. 2009 Mar; 22(4): 378–385. DOI:10.1016/j.mineng.2008.10.007
  • Kaya M. Recovery of metals from electronic waste by physical and chemical recycling processes. Feb. 2016;57:64–90. DOI: 10.1016/j.wasman.2016.08.004
  • Kumar Tyagi A. A study of E-Waste management on the subject of awareness of college Students. 2015;1(1):7–13.
  • Pan D, Su F, Liu C, et al. Research progress for plastic waste management and manufacture of value-added products. Adv Compos Hybrid Mater. 2020 Dec;3(4):443–461.
  • Agustina Hidayat Y, Kiranamahsa S, Arya Zamal M. 1 industrial engineering department, faculty of industrial technology, bandung institute of technology, jl ganeca no. 10, Bandung, Indonesia, and 2 engineering management department, faculty of industrial technology, Bandung institute of technology, Jl Ganeca No. 10, Bandung, Indonesia, “A study of plastic waste management effectiveness in Indonesia industries. AIMS Energy. 2019;7(3):350–370. DOI:10.3934/energy.2019.3.350
  • Patnaik S, Barick AK, Panda AK. Thermo-catalytic degradation of different consumer plastic wastes by zeolite a catalyst: a kinetic approach. Prog Rubber Plast Recycl Technol. 2021 May; 37(2): 148–164. DOI:10.1177/1477760620972407
  • Bello S, Raheem I, Raji N. Study of tensile properties, fractography and morphology of aluminium (1xxx)/coconut shell micro particle composites. J King Saud Univ - Sci. 2015 Oct;29:269–277. DOI:10.1016/j.jksues.2015.10.001
  • De Farias Silva C, Cabral M, Abud AK, et al. Bioethanol production from coconut husk fiber. Ciênc Rural. 2016 Mar; 46(10): 1872–1877. DOI:10.1590/0103-8478cr20151331
  • Muhammad A, Rashidi AR, Buddin MMHS. Effect of coconut fiber reinforcement on mechanical properties of corn starch bioplastics. Int J Eng Technol. 2018 Nov;7(4.18, Art. no. 4.18): 267–270.
  • Ramprasath R, Jayabal S, Subramanian KS, et al. Investigation on impact behavior of rice husk impregnated coir-vinyl ester composites. Macromol Symp. 2016 Mar;361(1):123–128.
  • Gunasekaran K, Annadurai R, Kumar P. A study on some durability properties of coconut shell aggregate concrete. Mater Struct. 2015 Jan; 48(5): 1253–1264. DOI:10.1617/s11527-013-0230-2
  • George JM, Babu A, Franco G, et al. Coconut shell as a substitute for coarse aggregate in concrete. 2016 Jan; 1(4): 100–103.
  • Salmah H, Koay S, Hakimah O. Surface modification of coconut shell powder filled polylactic acid biocomposites. J Thermoplast Compos Mater. 2013 Jul; 26(6): 809–819. DOI:10.1177/0892705711429981
  • Singh A. Study of mechanical properties and absorption behaviour of coconut shell powder-epoxy composites to cite this article. IJMSA. 2013 May; 2(5): 157–161. DOI:10.11648/j.ijmsa.20130205.12
  • Agunsoye JO, Aigbodion VS. Bagasse filled recycled polyethylene bio-composites: morphological and mechanical properties study. Results Phys. 2013 Jan;3:187–194. DOI:10.1016/j.rinp.2013.09.003
  • Yadav AK, Pandey KM, Dey A. Aluminium metal matrix composite with rice husk as reinforcement: a review. Mater Today Proc. 2018 Jan; 5(9, Part 3): 20130–20137. DOI:10.1016/j.matpr.2018.06.381
  • Gladston J, Dinaharan I, Sheriff N, et al. Dry sliding wear behavior of AA6061 aluminum alloy composites reinforced rice husk ash particulates produced using compocasting. J Asian Ceram Soc. 2017 Apr;5(2):127–135.
  • Ashori A. Hybrid composites from waste materials. J Polym Environ. 2010 Mar; 18(1): 65–70. DOI:10.1007/s10924-009-0155-6
  • Sharma H, Singh I, Misra JP. Effect of particle size on physical, thermal and mechanical behaviour of epoxy composites reinforced with food waste fillers. Proc Inst Mech Eng Part C J Mech Eng Sci. 2021 Aug; 235(16): 3029–3035. DOI:10.1177/0954406220958434
  • Bodirlau R, Teaca C-A, Spiridon I. Influence of natural fillers on the properties of starch-based biocomposite films. Compos Part B Eng. 2013 Jan; 44(1): 575–583. DOI:10.1016/j.compositesb.2012.02.039
  • La Mantia FP, Morreale M. Green composites: a brief review. Compos Part Appl Sci Manuf. 2011 Jun; 42(6): 579–588. DOI:10.1016/j.compositesa.2011.01.017
  • Madurwar M, Ralegaonkar R, Mandavgane S. Application of agro-waste for sustainable construction materials: a Review. Constr Build Mater. 2012 Oct;38:872–878. DOI:10.1016/j.conbuildmat.2012.09.011
  • Gurunathan T, Mohanty S, Nayak SK. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Part Appl Sci Manuf. 2015 Oct;77:1–25. DOI:10.1016/j.compositesa.2015.06.007
  • Dey P, Ray S. An overview of the recent trends in manufacturing of green composites – considerations and challenges. Mater Today Proc. 2018 Jan; 5(9, Part 3): 19783–19789. DOI:10.1016/j.matpr.2018.06.341
  • Florencia V, López OV, García MA. Exploitation of by-products from cassava and ahipa starch extraction as filler of thermoplastic corn starch. Compos Part B Eng. 2020 Feb;182:107653. DOI:10.1016/j.compositesb.2019.107653
  • Prasad V, Joseph MA, Sekar K, et al. Flexural and impact properties of flax fibre reinforced epoxy composite with nano TiO2 addition. Mater Today Proc. 2018 Jan; 5(11, Part 3): 24862–24870. DOI:10.1016/j.matpr.2018.10.285
  • Safinsha S, Mubarak Ali M. Composite scaffolds in tissue engineering. Mater Today Proc. 2020 Jan;24:2318–2329. DOI:10.1016/j.matpr.2020.03.761
  • Thomas L, Ali MM, Kumar VNA, et al. Influence of cryogenic and chemical treatment on thermal and physical properties of hemp fabric. IOP Conf. Ser Mater Sci Eng. 2021 Mar; 1114(1): 012080. DOI:10.1088/1757-899X/1114/1/012080
  • Agunsoye J, Bello SA, Yekinni AA, et al. Potential of recycled aluminium cans and 215 μm sized eggshell powder for low cost metal matrix composites. J Metall Eng. 2015 Jan;4:24.
  • Intharapat P, Kongnoo A, Katueangngan K. The potential of chicken eggshell waste as a bio-filler filled Epoxidized Natural Rubber (ENR) Composite and its Properties. J Polym Environ. 2012 Mar; 21(1): 245–258. DOI:10.1007/s10924-012-0475-9
  • Urtekin G, Hazer S, Aytac A. Effect of eggshell and intumescent flame retardant on the thermal and mechanical properties of plasticised PLA. Plast Rubber Compos. 2021 Mar; 50(3): 127–136. DOI:10.1080/14658011.2020.1844522
  • Dagwa I, Adama K. Property evaluation of pumice particulate-reinforcement in recycled beverage cans for Al-MMCs manufacture. Journal Of King Saud University - Engineering Sciences. 2016 Jan; 30(1): 61–67. DOI:10.1016/j.jksues.2015.12.006
  • Elsevier Enhanced Reader. Characterization of hybrid aluminum matrix composites for advanced applications – a review. https://reader.elsevier.com/reader/sd/pii/S2238785415000708?token=FF5888967153ED2EC8F80716417938189CAC9C3E6025E400E83B3BC6D7BA74CC4FA7EB7E7F56632B4EBC22EE921EC489&originRegion=eu-west-1&originCreation=20211008055851 (accessed Oct. 8, 2021).
  • Anilkumar H, Hebbar H, Ravishankar K, Mechanical properties of fly ash reinforced aluminium alloy (Al6061) composites. Int J Mech Mater Eng. 2011 Jan;6: 55–59.
  • Thiyagarajan R, Ganesan V, Dennison MS, et al. Preparation and characterization of aluminium metal matrix composite by using stir casting technique. Mar. 2018; 3: 148–155.
  • Noh M, Ismail A, Abdul Hamid AH. The effect of palm oil fly ash reinforcement on recycle aluminium via sand casting. Int J Eng Technol. 2018 Nov; 7(4.27): 162–164. DOI:10.14419/ijet.v7i4.27.22508
  • Gangwar S, Pathak VK. A critical review on tribological properties, thermal behavior, and different applications of industrial waste reinforcement for composites. Proc Inst Mech Eng Part J Mater Des Appl. 2021 Mar; 235(3): 684–706. DOI:10.1177/1464420720972434
  • Pappu A, Thakur VK. Towards sustainable micro and nano composites from fly ash and natural fibers for multifunctional applications. Vacuum. 2017 Dec;146:375–385. DOI:10.1016/j.vacuum.2017.05.026
  • Xu W, He Y, Kong P, et al. An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications. J Appl Phys. 2015 Nov;118(18):184903.
  • Wang H, Wang Q, Zhang Q, et al. High thermal conductive composite with low dielectric constant and dielectric loss accomplished through flower-like Al2O3 coated BNNs for advanced circuit substrate applications. Compos Sci Technol. 2021 Nov;216:109048.
  • Sriramamurthy LK, Hunasikatti S, Ramegowda NKJ, et al. Effect of E-waste rubber on mechanical behavior of glass a fiber reinforced with epoxy composites. AIP Conf Proc. 2019 Mar;2080(1):020003.
  • Shiri N, Bhat S, Moger K, et al. Taguchi analysis on the compressive strength behaviour of waste plastic-rubber composite materials. 2016 Jan;6:88–93.
  • Rahim SA, Unnikrishnan G, Joseph MA, et al. Chitosan-reinforced nitrile rubber – a step towards sustainable development. Plast Rubber Compos. 2021 Oct;1–9.
  • Muniyandi SK, Sohaili J, Hassan A. Mechanical, thermal, morphological and leaching properties of nonmetallic printed circuit board waste in recycled HDPE composites. J Clean Prod. 2013 Oct;57:327–334. DOI:10.1016/j.jclepro.2013.05.033
  • Wang X, Guo Y, Liu J, et al. PVC-based composite material containing recycled non-metallic printed circuit board (PCB) powders. J Environ Manage. 2010 Dec;91(12):2505–2510.
  • Zheng Y, Shen Z, Cai C, et al. The reuse of nonmetals recycled from waste printed circuit boards as reinforcing fillers in the polypropylene composites. J Hazard Mater. 2009 Apr; 163(2–3): 600–606. DOI:10.1016/j.jhazmat.2008.07.008
  • Yang S, Jiang J, Duan W, et al. Production of sustainable wood-plastic composites from the nonmetals in waste printed circuit boards: excellent physical performance achieved by solid-state shear milling. Compos Sci Technol. 2020 Nov;200:108411.
  • Cai J, Fu Q, Long M, et al. The sound insulation property of composite from waste printed circuit board and unsaturated polyester. Compos Sci Technol. 2017 Jun;145:132–137.
  • Zhu P, Chen Y, Wang LY, et al. Treatment of waste printed circuit board by green solvent using ionic liquid. Waste Manag. 2012 Oct; 32(10): 1914–1918. DOI:10.1016/j.wasman.2012.05.025
  • Tuncuk A, Stazi V, Akcil A, et al. Aqueous metal recovery techniques from e-scrap: hydrometallurgy in recycling. Miner Eng. 2012 Jan;25(1):28–37.
  • Yazici EY, Deveci H. Extraction of metals from waste printed circuit boards (WPCBs) in H2SO4–CuSO4–NaCl solutions. Hydrometallurgy. 2013 Jul;139:30–38. DOI:10.1016/j.hydromet.2013.06.018
  • Yazici EY, Deveci H. Ferric sulphate leaching of metals from waste printed circuit boards. Int J Miner Process. 2014 Dec;133:39–45. DOI:10.1016/j.minpro.2014.09.015
  • Sabarinathan P, Annamalai V, Rajkumar K. Evaluation of thermal stability and damping behavior of electrical insulator waste reinforced thermoset polymer composite. Proc Inst Mech Eng Part C J Mech Eng Sci. 2019 May; 233(10): 3603–3618. DOI:10.1177/0954406218823229
  • Venkatakrishnan R, Pabhakaran R, NarmadaDevi N. The effect of e-waste particle on mechanical behavior of particulate reinforced epoxy matrix composite. IOP Conf Ser Earth Environ Sci. 2020 Oct; 573(1): 012013. DOI:10.1088/1755-1315/573/1/012013
  • Hajj NE, Seif S, Saliba K, et al. Recycling of plastic mixture wastes as carrier resin for short glass fiber composites. Waste Biomass Valorization. 2020 May;11(5):2261–2271.
  • Marsh R, Griffiths AJ, Williams KP, et al. Degradation of recycled polyethylene film materials due to contamination encountered in the products’ life cycle. Proc Inst Mech Eng Part C J Mech Eng Sci. 2006 May;220(5):593–602.
  • Wu F, Misra M, Mohanty AK. Sustainable green composites from biodegradable plastics blend and natural fibre with balanced performance: synergy of nano-structured blend and reactive extrusion. Compos Sci Technol. 2020 Nov;200:108369. DOI:10.1016/j.compscitech.2020.108369
  • Jordá-Vilaplana A, Carbonell-Verdú A, Samper MD, et al. Development and characterization of a new natural fiber reinforced thermoplastic (NFRP) with Cortaderia selloana (Pampa grass) short fibers. Compos Sci Technol. 2017 Jun;145:1–9. DOI:10.1016/j.compscitech.2017.03.036
  • Seghiri M, Boutoutaou D, Kriker A, et al. The possibility of making a composite material from waste plastic. Energy Procedia. 2017 Jul;119:163–169.
  • Adeniyi AG, Abdulkareem SA, Amosa MK, et al. Mechanical, crystallographic, and microstructural analysis of polymer composites developed from iron filings and polystyrene wastes. Mech Adv Compos Struct. 2022 Apr;9(1):137–145.
  • Turner R, Kelly C, Fox R, et al. Re-formative polymer composites from plastic waste: novel infrastructural product application. Recycling. 2018 Nov; 3(4): 54. DOI:10.3390/recycling3040054
  • Nadimalla A, Aliyyah Binti Masjuki S, Binti Saad A, et al. Polyethylene Terephthalate (PET) bottles waste as fine aggregate in concrete. Int J Innov Technol Explor Eng. 2019 Jul;8(6S4):F12430486S419.
  • Umasabor RI, Daniel SC. The effect of using polyethylene terephthalate as an additive on the flexural and compressive strength of concrete. Heliyon. 2020 Aug; 6(8): e04700. DOI:10.1016/j.heliyon.2020.e04700
  • Rostami R, Zarrebini M, Mandegari M, et al. The effect of concrete alkalinity on behavior of reinforcing polyester and polypropylene fibers with similar properties. Cem Concr Compos. 2019 Mar;97:118–124. DOI:10.1016/j.cemconcomp.2018.12.012
  • Veropalumbo R, Russo F, Viscione N, et al. Investigating the rheological properties of hot bituminous mastics made up using plastic waste materials as filler. Constr Build Mater. 2021 Feb;270:121394.
  • Almeida A, Capitão S, Estanqueiro C, et al. Possibility of incorporating waste plastic film flakes into warm-mix asphalt as a bitumen extender. Constr Build Mater. 2021 Jul;291:123384.
  • Wu S, Montalvo L. Repurposing waste plastics into cleaner asphalt pavement materials: a critical literature review. J Clean Prod. 2021 Jan;280:124355. DOI:10.1016/j.jclepro.2020.124355
  • Du Z, Jiang C, Yuan J, et al. Low temperature performance characteristics of polyethylene modified asphalts – a review. Constr Build Mater. 2020 Dec;264:120704.
  • Thiam M, Fall M. Mechanical, physical and microstructural properties of a mortar with melted plastic waste binder. Constr Build Mater. 2021 Oct;302:124190. DOI:10.1016/j.conbuildmat.2021.124190
  • https://www.researchgate.net/publication/280015894_Assessment_of_reinforcing_effects_of_recycled_plastic_and_paper_in_concrete.
  • Choi Y-W, Moon D-J, Chung J-S, et al. Effects of waste PET bottles aggregate on the properties of concrete. Cem Concr Res. 2005 Apr;35(4):776–781.
  • Hannawi K, Kamali-Bernard S, Prince W. Physical and mechanical properties of mortars containing PET and PC waste aggregates. Waste Manag. 2010 Nov; 30(11): 2312–2320. DOI:10.1016/j.wasman.2010.03.028
  • Kou SC, Lee G, Poon CS, et al. Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes. Waste Manag. 2009 Feb; 29(2): 621–628. DOI:10.1016/j.wasman.2008.06.014
  • Wahid SA, Rawi SM, Desa N. Utilization of plastic bottle waste in sand bricks. 2015; 5(1): 10.
  • Almeshal I, Tayeh BA, Alyousef R, et al. Use of recycled plastic as fine aggregate in cementitious composites: a review. Constr Build Mater. 2020 Aug;253:119146.
  • Pooja P, Vaitla M, Sravan G, et al. Study on behavior of concrete with partial replacement of fine aggregate with waste plastics. Mater Today Proc. 2019;8:182–187. doi: 10.1016/j.matpr.2019.02.098
  • Rai B, Rushad ST, Kr B, et al. Study of waste plastic mix concrete with plasticizer. ISRN Civ Eng. 2012 May;2012:1–5. DOI:10.5402/2012/469272
  • Kumar KP, Gomathi M. Production of construction bricks by partial replacement of waste plastics. IOSR J Mech Civ Eng. 2017 Jul; 14(4): 09–12. DOI:10.9790/1684-1404020912
  • Kaur G, Pavia S. Physical properties and microstructure of plastic aggregate mortars made with acrylonitrile-butadiene-styrene (ABS), polycarbonate (PC), polyoxymethylene (POM) and ABS/PC blend waste. J Build Eng. 2020 Sep;31:101341. DOI:10.1016/j.jobe.2020.101341
  • Vanitha S, Natarajan V, Praba M. Utilisation of waste plastics as a partial replacement of coarse aggregate in concrete blocks. Indian J Sci Technol. 2015 Jul;8(12). doi:10.17485/ijst/2015/v8i12/54462.
  • Jaivignesh B, Sofi A. Study on mechanical properties of concrete using plastic waste as an aggregate. IOP Conf Ser Earth Environ Sci. 2017 Jul;80:012016. DOI:10.1088/1755-1315/80/1/012016
  • Correa PM, Santana RMC, Guimarães D, et al. Post-consumer PP as partial substitute of sand: effect of surface treatment PP with surfactant on concrete properties. Compos Interfaces. 2020 Sep;27(9):815–828.
  • Zulkernain NH, Gani P, Chuck Chuan N. Utilisation of plastic waste as aggregate in construction materials: a review. Constr Build Mater. 2021;296:19. doi: 10.1016/j.conbuildmat.2021.123669
  • Aminot Y, Lanctôt C, Bednarz V, et al. Leaching of flame-retardants from polystyrene debris: bioaccumulation and potential effects on coral. Mar Pollut Bull. 2020 Feb;151:110862.
  • Barboza LGA, Cunha SC, Monteiro C, et al. Bisphenol a and its analogs in muscle and liver of fish from the North East Atlantic Ocean in relation to microplastic contamination. Exposure and risk to human consumers. J Hazard Mater. 2020 Jul;393:122419. DOI:10.1016/j.jhazmat.2020.122419
  • Li S, Wan C, Wang S, et al. Separation of core-shell structured carbon black nanoparticles from waste tires by light pyrolysis. Compos Sci Technol. 2016 Oct;135:13–20.
  • Hassan AA, Zhang Z, Formela K, et al. Thermo-oxidative exfoliation of carbon black from ground tire rubber as potential reinforcement in green tires. Compos Sci Technol. 2021 Sep;214:108991.
  • Zhao J, Wang X-M, Chang JM, et al. Sound insulation property of wood–waste tire rubber composite. Compos Sci Technol. 2010 Nov;70(14):2033–2038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.