115
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimization of Ti-30Nb-xSn alloys on morphological, mechanical and corrosion properties

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2634-2642 | Accepted 13 Jun 2023, Published online: 26 Jun 2023

References

  • Welham NJ. Mechanically induced reduction of ilmenite (FeTio3) and rutile (TiO2) by magnesium. J Alloys Compd. 1998;274(1–2):260–265. doi: 10.1016/S0925-8388(98)00526-X
  • Utomo EP, Herbirowo S, Puspasari V, et al. Characteristics and corrosion behavior of Ti–30Nb–5Sn alloys in histidine solution with various NaCl concentrations. Int J Corros Scale Inhib. 2021;10(2):592–601.
  • Zhang LC, Chen LY. A review on biomedical titanium alloys: recent progress and prospect. Adv Eng Mater. 2019;21(4):1–29. doi: 10.1002/adem.201801215
  • Tavakoli J, Khosroshahi ME. Surface morphology characterization of laser-induced titanium implants: lesson to enhance osseointegration process. Biomed Eng Lett. 2018;8(3):249–257. doi: 10.1007/s13534-018-0063-6
  • Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27(9):1728–1734. DOI:10.1016/j.biomaterials.2005.10.003
  • Nag S, Banerjee R, Fraser HL. Microstructural evolution and strengthening mechanisms in Ti-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys. Mater Sci Eng C. 2005;25(3):357–362. doi: 10.1016/j.msec.2004.12.013
  • Manam NS, Harun WSW, Shri DNA, et al. Study of corrosion in biocompatible metals for implants: a review. J Alloys Compd. 2017;701:698–715. DOI:10.1016/j.jallcom.2017.01.196
  • Mitsuo N. Mechanical properties of biomedical titanium alloys. Mater Sci Eng A. 1998;243(1–2):231–236. doi: 10.1016/S0921-5093(97)00806-X
  • Rosalbino F, MacCiò D, Scavino G, et al. In vitro corrosion behaviour of Ti-Nb-Sn shape memory alloys in Ringer’s physiological solution. J Mater Sci Mater Med. 2012;23(4):865–871. doi: 10.1007/s10856-012-4560-3
  • Zhang DC, Yang S, Wei M, et al. Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn Alloys. J Mech Behav Biomed Mater. 2012;13:156–165. doi: 10.1016/j.jmbbm.2012.04.017
  • Moraes PEL, Contieri RJ, Lopes ESN, et al. Effects of Sn addition on the microstructure, mechanical properties and corrosion behavior of Ti-Nb-Sn alloys. Mater Charact. 2014;96:273–281. doi: 10.1016/j.matchar.2014.08.014
  • Guo Y, Georgarakis K, Yokoyama Y, et al. On the mechanical properties of TiNb based alloys. J Alloys Compd. 2013;571:25–30. DOI:10.1016/j.jallcom.2013.03.192
  • Zhang LC, Jia Z, Lyu F, et al. A review of catalytic performance of metallic glasses in wastewater treatment: recent progress and prospects. Prog Mater Sci. 2019;105(January 2018):100576. doi: 10.1016/j.pmatsci.2019.100576
  • Utomo EP, Kartika I, Anawati A. Effect of Sn on mechanical hardness of as-cast Ti-Nb-Sn alloys. AIP Conf Proc. 2018;1964(May). doi:10.1063/1.5038328
  • Jaber H, Kovacs T, János K. Investigating the impact of a selective laser melting process on Ti6Al4V alloy hybrid powders with spherical and irregular shapes. Adv Mater Process Technol. 2022;8(1):715–731. doi: 10.1080/2374068X.2020.1829960

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.