97
Views
1
CrossRef citations to date
0
Altmetric
Research Article

High temperature deformation behaviour and microstructure evolution in Cu containing High Strength Low Alloy (HSLA) steel

, , , , , , & show all
Pages 2643-2663 | Accepted 13 Jun 2023, Published online: 19 Jun 2023

References

  • Far ARH, Anijdan SHM, Abbasi SM. The effect of increasing Cu and Ni on a significant enhancement of mechanical properties of high strength low alloy, low carbon steels of HSLA-100 type. Mater Sci Eng A. 2019;746:384–393. doi: 10.1016/j.msea.2019.01.025
  • Montemarano TW, Sack BP, Gudas JP, et al. High strength low alloy steels in naval construction. J Ship Production. 1986;2(3):145–162. doi: 10.5957/jsp.1986.2.3.145
  • Ghosh SK, Bandyopadhyay PS, Kundu S, et al. Copper bearing microalloyed ultrahigh strength steel on a pilot scale: microstructure and properties. Mater Sci Eng A. 2011;528(27):7887–7894. doi: 10.1016/j.msea.2011.06.085
  • Motallebi R, Savaedi Z, Mirzadeh H. Additive manufacturing – a review of hot deformation behavior and constitutive modeling of flow stress. Curr Opin Solid State Mater Sci. 2022;26:100992. doi: 10.1016/j.cossms.2022.100992
  • Xiong Y, Wen D, Zheng Z, et al. Effect of heat treatment on microstructure and mechanical properties of directed energy deposition-Arc 300M steel. Mater Charact. 2023;198:112756. doi: 10.1016/j.matchar.2023.112756
  • Wu C, Han S. Hot deformation behaviour and dynamic recrystallization characteristics in a low-alloy high-strength Ni–Cr–Mo–V Steel. Acta Metall Sin (Engl Lett). 2018;31:963–974. doi: 10.1007/s40195-018-0729-1
  • Ping XS, Liang GX, Liu W, et al. Hot deformation behaviour and processing map of low-alloy offshore steel. J Iron Steel Res Int. 2022;29:474–483. doi: 10.1007/s42243-021-00603-4
  • Kundalkar D, Tewari A. EffecT of strain, strain rate and temperature of hot deformation on microstructural evolution of Ti and V microalloyed steel. Int J Metall Eng. 2013;2:117–124.
  • Ebrahimi R, Solhjoo S. Characteristic points of stress-strain curve at high temperature. Int J Iron Steel Res. 2007;4:24–27.
  • Poliak EI, Jonas JJ. Initiation of dynamic recrystallization in constant strain rate hot deformation. ISIJ Int. 2003;43(5):684–691. doi: 10.2355/isijinternational.43.684
  • Mandal S, Jayalakshmi M, Bhaduri AK, et al. Effect of strain rate on the dynamic recrystallization behavior in a nitrogen-enhanced 316L(N). Metall Mater Trans A. 2014;45(12):5645–5656. doi: 10.1007/s11661-014-2480-1
  • Roberts W, Ahlblom B. A nucleation criterion for dynamic recrystallization during hot working. Acta Metall. 1978;26(5):801–813. doi: 10.1016/0001-6160(78)90030-5
  • Chen L, Sun W, Lin J, et al. Modelling of constitutive relationship, dynamic recrystallization and grain size of 40Cr steel during hot deformation process. Results Phys. 2019;12:784–792. doi: 10.1016/j.rinp.2018.12.046
  • Zhong L, Wang B, Hu C, et al. Hot deformation behaviour and dynamic recrystallization of ultra-high strength steel. Metals. 2021;11:1239. doi: 10.3390/met11081239
  • Rakhshkhorshid M, Hashemi SH. Experimental study of hot deformation behavior in API X65 steel. Mater Sci Eng A. 2013;573:37–44. doi: 10.1016/j.msea.2013.02.045
  • Jonas JJ, Quelennec X, Jiang L, et al. The Avrami kinetics of dynamic recrystallization. Acta Mater. 2009;57(9):2748–2756. doi: 10.1016/j.actamat.2009.02.033
  • Momeni A, Arabi H, Rezaei A, et al. Hot deformation behavior of austenite in HSLA-100 microalloyed steel. Mater Sci Eng A. 2011;528(4–5):2158–2163. doi: 10.1016/j.msea.2010.11.062
  • Lan L, Zhou W, Misra RDK. Effect of hot deformation parameters on flow stress and microstructure in a low carbon microalloyed steel. Mater Sci Eng A. 2019;756:18–26. doi: 10.1016/j.msea.2019.04.039
  • Poliak EI. Dynamic recrystallization control in hot rolling. Procedia Manuf. 2020;50:362–367. doi: 10.1016/j.promfg.2020.08.067
  • Samantaray D, Mandal S, Bhaduri AK. A critical comparison of various data processing methods in simple uni-axial compression testing. Mater Design. 2011;32(5):2797–2802. doi: 10.1016/j.matdes.2011.01.007
  • Castellanos J, Rieiro I, Carsí M, et al. Analysis of adiabatic heating and its influence on the Garofalo equation parameters of a high nitrogen steel. Mater Sci Eng A. 2009;517(1–2):191–196. doi: 10.1016/j.msea.2009.03.042
  • Roebuck B, Lord JD, Brooks M, et al. Measurement of flow stress in hot axisymmetric compression tests. Mater High Temp. 2006;23(2):59–83. doi: 10.1179/mht.2006.005
  • Dieter GE, Kuhn HA, Semiatin SL. Handbook of Workability and Process Design. Handbook Of Workability And Process Design. 2003:148–149.
  • Li N, Zhao C, Jiang Z, et al. Flow behaviour and processing maps of high-strength low-alloy steel during hot compression. Mater Charact. 2019;153:224–233. doi: 10.1016/j.matchar.2019.05.009
  • Nayak S, Dhondapure P, Singh AK, et al. Assessment of constitutive models to predict high temperature flow behaviour of Ti-6Al-4V preform. Adv Mater Process Technol. 2020;6:244–258. doi: 10.1080/2374068X.2020.1731233
  • Chen Y, Li Y, Zhou X, et al. Dynamic Recrystallization and Recovery Behaviors in Austenite of a Novel Fe-1.93Mn-0.07Ni-1.96Cr-0.35Mo Ultrahigh Strength Steel. J Chem. 2021;2021:1–8. Available from. doi: 10.1155/2021/2809145
  • Saadatkia S, Mirzadeh H, Cabrera JM. Hot deformation behaviour, dynamic recrystallization, and physically-based constitutive modeling of plain carbon steels. Mater SciEng A. 2015;636:196–202. doi: 10.1016/j.msea.2015.03.104
  • Sakai T, Jonas JJ. Overview no. 35 Dynamic recrystallization: mechanical and microstructural considerations. Acta Metall. 1984;32(2):189–209. doi:10.1016/0001-6160(84)90049-X.
  • Li C, Liu Y, Tan Y, et al. Hot deformation behaviour and constitutive modeling of H13-mod steel. Metals. 2018;8:846. doi: 10.3390/met8100846
  • Shaban M, Eghbali B. Determination of critical conditions for dynamic recrystallization of a microalloyed steel. Mater Sci Eng A. 2010;527(16–17):4320–4325. doi: 10.1016/j.msea.2010.03.086
  • Stewart GR, Elwazri AM, Vue S, et al. Modelling of dynamic recrystallization kinetics in austenitic stainless and hypereutectoid steels. Mater Sci Technol. 2006;22:519–524. doi: 10.1179/026708306X81478
  • Hu Z, Wang K. Evolution of Dynamic Recrystallization in 5CrNiMoV Steel during Hot Forming. Adv Mater Sci Eng. 2020;2020:1–13. doi: 10.1155/2020/4732683
  • Sellars CM, Tegart WJM. Hot Workability. Int Mater Rev. 1972;17(1):1–24. doi: 10.1179/095066072790137765
  • Venkata Ramana A, Balasundar I, Davidson MJ, et al. Constitutive modelling of a new high-strength low-alloy steel using modified zerilli–armstrong and arrhenius model. Trans Indian Inst Met. 2019;72(10):2869–2876. doi: 10.1007/s12666-019-01763-4
  • Ren F, Chen F, Chen J. Investigation on dynamic recrystallization behaviour of martensitic stainless steel. Adv Mater Sci Eng. 2014;2014:1–16. doi: 10.1155/2014/986928
  • Xu Y, Tang D, Song Y, et al. Dynamic recrystallization kinetics model of X70 pipeline steel. Mater Design. 2012;39:168–174. doi: 10.1016/j.matdes.2012.02.034
  • Ryan ND, McQueen HJ. Dynamic softening mechanisms in 304 austenitic stainless steel. Can Metall Q. 1990;29(2):147–162. doi: 10.1179/cmq.1990.29.2.147
  • Dehghan-Manshadi A, Barnett MR, Hodgson PD. Hot deformation and recrystallization of austenitic stainless steel: part I. dynamic recrystallization. Metall Mater Trans A. 2008;39(6):1359–1370. doi: 10.1007/s11661-008-9512-7
  • Zhang L, Guo DC. A general etchant for revealing prior-austenite grain boundaries in steels. Mater Charact. 1993;30:299–305. doi: 10.1016/1044-5803(93)90078-A
  • Sinha V, Payton EJ, Gonzales M, et al. Delineation Of prior austenite grain boundaries in a low-alloy high-performance steel. Metallogr Microstruct Anal. 2017;6:610–618. doi: 10.1007/s13632-017-0403-4
  • Wang J, Enloe C, Singh J, et al. Effect of Prior Austenite Grain Size on Impact Toughness of Press Hardened Steel. SAE Int J Mater Manuf. 2016;9(2):488–493. doi: 10.4271/2016-01-0359
  • Alaneme KK, Okotete EA. Recrystallization mechanisms and microstructure development in emerging metallic materials: a review. J Sci. 2019;4(1):19–33. doi: 10.1016/j.jsamd.2018.12.007
  • Cayron C, Artaud B, Briottet L. Reconstruction of parent grains from EBSD data. Mater Charact. 2006;57(4–5):386–401. doi: 10.1016/j.matchar.2006.03.008
  • Bernier N, Bracke L, Malet L, et al. An alternative to the crystallographic reconstruction of austenite in steels. Mater Charact. 2014;89:23–32. doi: 10.1016/j.matchar.2013.12.014
  • Perez-Arantegui J, Larrea A. Electron backscattering diffraction as a complementary analytical approach to the microstructural characterization of ancient materials by electron microscopy. Trends Analyt Chem. 2015;72:193–201. doi: 10.1016/j.trac.2015.03.026
  • Gyhlesten Back J, Surreddi KB. Microstructure analysis of martensitic low alloy carbon steel samples subjected to deformation dilatometry. Mater Charact. 2019;157:109926. doi: 10.1016/j.matchar.2019.109926
  • Kitahara H, Ueji R, Tsuji N, et al. Crystallographic features of lath martensite in low-carbon steel. Acta Mater. 2006;54(5):1279–1288. doi: 10.1016/j.actamat.2005.11.001
  • Germain L, Gey N, Mercier R, et al. An advanced approach to reconstructing parent orientation maps in the case of approximate orientation relations: application to steels. Acta Mater. 2012;60:4511–4562. doi: 10.1016/j.actamat.2012.04.034
  • Du C, Hoefnagels JPM, Vaes R, et al. Block and sub-block boundary strengthening in lath martensite. Scr Mater. 2016;116:117–121. doi: 10.1016/j.scriptamat.2016.01.043
  • Luton MJ, Sellars CM. Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation. Acta Metall. 1969;17(8):1033–1043. doi: 10.1016/0001-6160(69)90049-2
  • Glover G, Sellars CM. Recovery and recrystallization during high temperature deformation of α-iron. Met Trans. 1973;4:765–775. doi: 10.1007/BF02643086
  • Kumar N, Kumar S, Rajput SK, et al. Modelling of flow stress and prediction of workability by processing map for hot compression of 43CrNi steel. ISIJ Int. 2017;57(3):497–505. doi: 10.2355/isijinternational.ISIJINT-2016-306
  • Sun H, Sun Y, Zhang R, et al. Study on hot workability and optimization of process parameters of a modified 310 austenitic stainless steel using processing maps. Mater Design. 2015;67:165–172. doi: 10.1016/j.matdes.2014.11.041

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.